Coal Geology & Exploration
Abstract
Background China possesses substantial resources of deep unmineable coal seams, which hold considerable potential for CO2 sequestration. However, simply sequestrating CO2 in deep coal seams incurs high economic costs while also wasting deep coal resources. The microbial conversion of sequestrated CO2 into methane (CH4) enables circular carbon capture, utilization, and storage (CCCUS), which is of great significance for the sustainable development of both resources and the environment.Methods Using a range of methods, including experimental study, theoretical analysis, and engineering simulations, CCCUS in deep unmineable coal seams is designed to (1) reveal the mechanisms behind efficient CO2 fracturing and associated permeability enhancement, as well as CO2 displacing CH4, in deep unminable coal seams; (2) to investigate the mechanisms controlling the generation of complex fracture networks and efficient CH4 displacement in the coal mines; (3) to develop methods for efficient hydrogen production from liquefied straw in deep coal seams under high-temperature and high-pressure conditions; (4) to propose a technical route for bioconversion of CO2 in deep coal seams into CH4 using liquefied straw; and (5) finally to evaluate the economic viability of CO2 recycling.Results and Conclusions CO2 fracturing in deep coal seams can create more complex fracture networks, increase the connectivity of micro- and nano-scale pores and fractures, and enhance CH4 displacement efficiency. Meanwhile, microorganisms enable the efficient conversion of CO2 into CH4, thereby improving the conversion efficiency of CO2 in deep coal seams. This study investigates the evolution patterns of pore and fracture structures in coal reservoirs under the combined effects of CO2 fracturing, CO2 displacing CH4, and CO2 to CH4 bioconversion. It improves the theory on the coupling of coal body structure evolution and fluid migration under CCCUS in deep unmineable coal seams and explores the influence patterns of CCCUS on surrounding rock stability and geological environment, along with associated controlling mechanisms. Furthermore, this study enriches and develops theories on multi-field coupling in transport within porous media, achieves the technical reliability of CO2 recycling, and quantitatively characterizes the economic indicators of CO2 recycling. The results of this study provide an important theoretical basis for the implementation of innovative CCCUS technology in deep unmineable coal seams and offer robust support for China’s energy revolution and the achievement of its goals of peak carbon dioxide emissions and carbon neutrality.
Keywords
deep, unmineable coal seam, CO2 fracturing, CO2 displacing CH4, and CO2 to CH4 bioconversion, theory of circular carbon capture utilization and storage (CCCUS), stability of surrounding rocks, geological environment
DOI
10.12363/issn.1001-1986.25.08.0575
Recommended Citation
LIANG Weiguo, YAN Jiwei, ZHU Dijie,
et al.
(2026)
"Concept of CCCUS technology for CO2 recycling in deep unmineable coal seams,"
Coal Geology & Exploration: Vol. 54:
Iss.
1, Article 8.
DOI: 10.12363/issn.1001-1986.25.08.0575
Available at:
https://cge.researchcommons.org/journal/vol54/iss1/8
Reference
[1] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211
XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211
[2] 桑树勋,王冉,周效志,等. 论煤地质学与碳中和[J]. 煤田地质与勘探,2021,49(1):1−11
SANG Shuxun,WANG Ran,ZHOU Xiaozhi,et al. Review on carbon neutralization associated with coal geology[J]. Coal Geology & Exploration,2021,49(1):1−11
[3] 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探,2018,46(5):1−9
SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration,2018,46(5):1−9
[4] 魏宁,刘胜男,李小春,等. CO2地质利用与封存的关键技术清单[J]. 洁净煤技术,2022,28(6):14−25
WEI Ning,LIU Shengnan,LI Xiaochun,et al. Key technologies inventory of CO2 geological utilization and storage[J]. Clean Coal Technology,2022,28(6):14−25
[5] CZERW K,BAEAN P,SZCZUROWSKI J,et al. Sorption and desorption of CO2 and CH4 in vitrinite– and inertinite–rich polish low–rank coal[J]. Natural Resources Research,2021,30:543−556.
[6] 刘延锋,李小春,白冰. 中国CO2煤层储存容量初步评价[J]. 岩石力学与工程学报,2005,24(16):2947−2952
LIU Yanfeng,LI Xiaochun,BAI Bing. Preliminary estimation of CO2 storage capacity of coalbeds in China[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2947−2952
[7] 李畅,梁卫国,侯东升,等. 水与超临界CO2致裂煤体的压裂特征与增渗效果对比[J]. 太原理工大学学报,2019,50(4):485−491
LI Chang,LIANG Weiguo,HOU Dongsheng,et al. Comparison of fracturing features and permeability enhancement of coal fractured by water and supercritical CO2[J]. Journal of Taiyuan University of Technology,2019,50(4):485−491
[8] 闫浩. 超临界CO2压裂煤体分阶段致裂机理及裂缝扩展规律[D]. 徐州:中国矿业大学,2020.
YAN Hao. Staged cracking mechanism and crack propagation law of supercritical CO2 fracturing coal mass[D]. Xuzhou:China University of Mining and Technology,2020.
[9] YANG Baige,CAO Yunxing,ZHANG Xinsheng,et al. Research on enhancing gas extraction efficiency through CO2 gas fracturing in outburst–prone coal seams[J]. ACS Omega,2024,9(42):43016−43024.
[10] 苏现波,夏大平,赵伟仲,等. 煤层气生物工程研究进展[J]. 煤炭科学技术,2020,48(6):1−30
SU Xianbo,XIA Daping,ZHAO Weizhong,et al. Research advances of coalbed gas bioengineering[J]. Coal Science and Technology,2020,48(6):1−30
[11] 姜冠伦,张新妙,栾金义. 二氧化碳生物转化制甲烷技术研究进展[J]. 微生物学报,2023,63(6):2245−2260
JIANG Guanlun,ZHANG Xinmiao,LUAN Jinyi. Research progress in bio–conversion of carbon dioxide to methane[J]. Acta Microbiologica Sinica,2023,63(6):2245−2260
[12] TYNE R L,BARRY P H,LAWSON M,et al. Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs[J]. Nature,2021,600:670–674.
[13] Biomethane Industrial Partnership. Advances in CO2 valorisation and integrated hydrogen–biomethane production[R]. BIP Europe,2025.
[14] 冯骁,邓泽,郭红光,等. 地质封存二氧化碳微生物转化研究进展[J]. 生物工程学报,2024,40(9):2884–2898.
FENG Xiao,DENG Ze,GUO Hongguang,et al. Research advances of microbial transformation of CO2 in geological sequestration[J]. Chinese Journal of Biotechnology,2024,40(9):2884–2898.
[15] WANG H,LI G,SHEN Z. A feasibility analysis on shale gas exploitation with supercritical carbon dioxide[J]. Energy Sources Part A:Recovery Utilization and Environmental Effects,2012,34(15):1426–1435.
[16] 王海柱,李根生,郑永,等. 超临界CO2压裂技术现状与展望[J]. 石油学报,2020,41(1):116–126.
WANG Haizhu,LI Gensheng,ZHENG Yong,et al. Research status and prospects of supercritical CO2 fracturing technology[J]. Acta Petrolei Sinica,2020,41(1):116–126.
[17] MIDDLETON R S,CAREY J W,CURRIER R P,et al. Shale gas and non–aqueous fracturing fluids:Opportunities and challenges for supercritical CO2[J]. Applied Energy,2015,147:500−509.
[18] ROGALA A,BERNACIAK M,KRZYSIEK J,et al. Non aqueous fracturing technologies for shale gas recovery[J]. Physicochemical Problems of Mineral Processing,2012,49(1):313−322.
[19] LU Yiyu,ZHENG Jingwei,GE Zhaolong,et al. A study of variation in the initiation pressure and fracture distribution patterns of raw coal in ScCO2 fracturing under the true tri–axial system[J]. Rock Mechanics and Rock Engineering,2022,55(6):3425−3438.
[20] 李畅,梁卫国,侯东升,等. 水、ScCO2致裂煤体裂纹形态与形成机制研究[J]. 岩石力学与工程学报,2020,39(4):761−772
LI Chang,LIANG Weiguo,HOU Dongsheng,et al. Morphology and formation mechanism of fractures in coal using hydraulic/ScCO2 fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(4):761−772
[21] HE Wei,LIAN Haojie,LIANG Weiguo,et al. Experimental study of supercritical CO2 fracturing across coal–rock interfaces[J]. Rock Mechanics and Rock Engineering,2023,56(1):57−68.
[22] 王磊,梁卫国. 超临界CO2/清水压裂煤体起裂和裂缝扩展试验研究[J]. 岩石力学与工程学报,2019,38(增刊1):2680−2689
WANG Lei,LIANG Weiguo. Experimental study on fracture initiation and growth in coal using hydraulic fracturing with supercritical CO2 and normal water[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(Sup.1):2680−2689
[23] 丛日超,王海柱,李根生,等. 超临界CO2聚能压裂开发煤层气可行性研究[J]. 煤炭学报,2023,48(8):3162−3171
CONG Richao,WANG Haizhu,LI Gensheng,et al. Feasibility on exploitation of coalbed methane by SC–CO2 shock fracturing[J]. Journal of China Coal Society,2023,48(8):3162−3171
[24] 梁卫国,贺伟,阎纪伟. 超临界CO2致煤岩力学特性弱化与破裂机理[J]. 煤炭学报,2022,47(7):2557−2568
LIANG Weiguo,HE Wei,YAN Jiwei. Weakening and fracturing mechanism of mechanical properties of coal and rock caused by supercritical CO2[J]. Journal of China Coal Society,2022,47(7):2557−2568
[25] 唐书恒,汤达祯,杨起. 二元气体等温吸附实验及其对煤层甲烷开发的意义[J]. 地球科学,2004,29(2):219−223
TANG Shuheng,TANG Dazhen,YANG Qi. Binary–component gas adsorption isotherm experiments and their significance to exploitation of coalbed methane[J]. Earth Science,2004,29(2):219−223
[26] 马东民,李来新,李小平,等. 大佛寺井田4号煤CH4与 CO2吸附解吸实验比较[J]. 煤炭学报,2014,39(9):1938−1944
MA Dongmin,LI Laixin,LI Xiaoping,et al. Contrastive experiment of adsorption–desorption between CH4 and CO2 in coal seam 4 of Dafosi coal mine[J]. Journal of China Coal Society,2014,39(9):1938−1944
[27] LI Wei,CHENG Yuanping,WU Dongmei,et al. CO2 isothermal adsorption models of coal in the Haishiwan coalfield[J]. Mining Science and Technology,2010,20(2):281−285.
[28] 杨宏民,王兆丰,任子阳. 煤中二元气体竞争吸附与置换解吸的差异性及其置换规律[J]. 煤炭学报,2015,40(7):1550−1554
YANG Hongmin,WANG Zhaofeng,REN Ziyang. Differences between competitive adsorption and replacement desorption of binary gases in coal and its replacement laws[J]. Journal of China Coal Society,2015,40(7):1550−1554
[29] 周来,冯启言,秦勇. CO2和CH4在煤基质表面竞争吸附的热力学分析[J]. 煤炭学报,2011,36(8):1307−1311
ZHOU Lai,FENG Qiyan,QIN Yong. Thermodynamic analysis of competitive adsorption of CO2 and CH4 on coal matrix[J]. Journal of China Coal Society,2011,36(8):1307−1311
[30] ZHANG Yihuai,LEBEDEV M,SARMADIVALEH M,et al. Swelling–induced changes in coal microstructure due to supercritical CO2 injection[J]. Geophysical Research Letters,2016,43(17):9077−9083.
[31] VISHAL V,SINGH T N. A laboratory investigation of permeability of coal to supercritical CO2[J]. Geotechnical and Geological Engineering,2015,33(4):1009−1016.
[32] ZHANG Guanglei,RANJITH P G,LIANG Weiguo,et al. Stress–dependent fracture porosity and permeability of fractured coal:An in–situ X–ray tomography study[J]. International Journal of Coal Geology,2019,213:103279.
[33] KOLAK J J,BURRUSS R C. Geochemical investigation of the potential for mobilizing non–methane hydrocarbons during carbon dioxide storage in deep coal beds[J]. Energy & Fuels,2006,20(2):566−574.
[34] DU Yi,SANG Shuxun,PAN Zhejun,et al. Experimental study of supercritical CO2–H2O–coal interactions and the effect on coal permeability[J]. Fuel,2019,253:369−382.
[35] GATHITU B B,CHEN Weiyin,MCCLURE M. Effects of coal interaction with supercritical CO2:Physical structure[J]. Industrial & Engineering Chemistry Research,2009,48(10):5024−5034.
[36] 开颜,王亚楠,孙英杰,等. 填埋场古细菌垂直分布格局及其与垃圾降解程度响应特征[J]. 环境科学学报,2021,41(3):1040−1049
KAI Yan,WANG Yanan,SUN Yingjie,et al. Archaea vertical distribution in landfill and its response characteristics to waste degradation degree[J]. Acta Scientiae Circumstantiae,2021,41(3):1040−1049
[37] WHITICAR M J,FABER E,SCHOELL M. Biogenic methane formation in marine and freshwater environments:CO2 reduction vs. acetate fermentation:Isotope evidence[J]. Geochimica et Cosmochimica Acta,1986,50(5):693−709.
[38] 李洋冰,曾磊,胡维强,等. 保德地区煤层气地球化学特征及成因探讨[J]. 煤田地质与勘探,2021,49(2):133−141
LI Yangbing,ZENG Lei,HU Weiqiang,et al. Geochemical characteristics and genesis of coalbed methane in Baode area[J]. Coal Geology & Exploration,2021,49(2):133−141
[39] 吴斌,周龙刚,潘新志,等. 新疆三塘湖盆地低煤阶煤层气成因探讨[J]. 特种油气藏,2020,27(1):47−54
WU Bin,ZHOU Longgang,PAN Xinzhi,et al. Discussion on genesis low coal rank coalbed methane in Santanghu Basin of Xinjiang Province[J]. Special Oil and Gas Reservoirs,2020,27(1):47−54
[40] KOIDE H,YAMAZAKI K. Subsurface CO2 disposal with enhanced gas recovery and biogeochemical carbon recycling[J]. Environmental Geosciences,2001,8(3):218−224.
[41] MAEDA H,MIYAGAWA Y,IKARASHI M,et al. Research for microbial conversion of residual oil into methane in depleted oil fields to develop new EOR process[C]//Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi,2010:SPE–138135–MS.
[42] 蔡曼,池昌桥,关越,等. 石油厌氧降解促进CO2的CH4转化[J]. 应用与环境生物学报,2012,18(5):775−779
CAI Man,CHI Changqiao,GUAN Yue,et al. Methanogenesis from anaerobic crude oil degradation amended with CO2[J]. Chinese Journal of Applied and Environmental Biology,2012,18(5):775−779
[43] 夏遵义,白志强. 利用产甲烷菌进行CO2地质固定在中国生物气田的应用初探[J]. 石油勘探与开发,2004,31(6):72−74
XIA Zunyi,BAI Zhiqiang. Discussion on a CO2 geological sequestration by methanogens in the biogenic gas field in China[J]. Petroleum Exploration and Development,2004,31(6):72−74
[44] XIA Daping,HUANG Song,GAO Zhixiang,et al. Effect of different inorganic iron compounds on the biological methanation of CO2 sequestered in coal seams[J]. Renewable Energy,2021,164:948−955.
[45] GUO Hongyu,GAO Zhixiang,XIA Daping,et al. Simulation study on the biological methanation of CO2 sequestered in coal seams[J]. Journal of CO2 Utilization,2019,34:171−179.
[46] FAN Yaoting,ZHANG Yahui,ZHANG Shufang,et al. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost[J]. Bioresource Technology,2006,97(3):500−505.
[47] PAN Chunmei,MA Hongcui,FAN Yaoting,et al. Bioaugmented cellulosic hydrogen production from cornstalk by integrating dilute acid–enzyme hydrolysis and dark fermentation[J]. International Journal of Hydrogen Energy,2011,36(8):4852−4862.
[48] CHENG Jun,SU Huibo,ZHOU Junhu,et al. Microwave–assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark– and photo–fermentation[J]. International Journal of Hydrogen Energy,2011,36(3):2093−2101.
[49] GREEN M S,FLANEGAN K C,GILCREASE P C. Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin,U. S. A.[J]. International Journal of Coal Geology,2008,76(1/2):34−45.
[50] GUO Hongguang,ZHANG Yiwen,ZHANG Jinlong,et al. Characterization of anthracite–degrading methanogenic microflora enriched from Qinshui Basin in China[J]. Energy & Fuels,2019,33(7):6380−6389.
[51] LIU Fangjing,GUO Hongguang,WANG Qiurong,et al. Characterization of organic compounds from hydrogen peroxide–treated subbituminous coal and their composition changes during microbial methanogenesis[J]. Fuel,2019,237:1209−1216.
[52] STRĄPOĆ D,MASTALERZ M,DAWSON K,et al. Biogeochemistry of microbial coal–bed methane[J]. Annual Review of Earth and Planetary Sciences,2011,39(1):617−656.
[53] LEUTHNER B,LEUTWEIN C,SCHULZ H,et al. Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica:A new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism[J]. Molecular Microbiology,1998,28(3):615−628.
[54] ZHANG Ji,LIANG Yanna,YAU P M,et al. A metaproteomic approach for identifying proteins in anaerobic bioreactors converting coal to methane[J]. International Journal of Coal Geology,2015,146:91−103.
[55] 郭红玉,罗源,马俊强,等. 不同煤阶煤的微生物增透效果和机理分析[J]. 煤炭学报,2014,39(9):1886−1891
GUO Hongyu,LUO Yuan,MA Junqiang,et al. Analysis of mechanism and permeability enhancing effect via microbial treatment on different–rank coals[J]. Journal of China Coal Society,2014,39(9):1886−1891
[56] BAO Yuan,JU Yiwen,WEI Chongtao,et al. Infrared spectrum studies of hydrocarbon generation and structure evolution of peat samples during pyrolysis and microbial degradation[J]. Spectroscopy and Spectral Analysis,2015,35(3):603−608.
[57] 夏大平,郭红玉,马俊强,等. 生物甲烷代谢对煤孔隙结构的影响[J]. 天然气地球科学,2014,25(7):1097−1102
XIA Daping,GUO Hongyu,MA Junqiang,et al. Impact of biogenic methane metabolism on pore structure of coals[J]. Natural Gas Geoscience,2014,25(7):1097−1102
[58] PANDEY R,HARPALANI S,FENG Ruimin,et al. Changes in gas storage and transport properties of coal as a result of enhanced microbial methane generation[J]. Fuel,2016,179:114−123.
[59] LI Dan,BAO Yuan,WANG Yaya,et al. Multiple–experimental investigation on the physicochemical structures alternation during coal biogasification[J]. Fuel,2023,339:127433.
[60] 鲍园,李争岩,安超,等. 多手段表征富油煤微生物厌氧发酵孔隙结构变化特征及机制[J]. 煤炭学报,2023,48(2):891−899
BAO Yuan,LI Zhengyan,AN Chao,et al. Multi–method characterization of pore structure evolution characteristics and mechanism of tar–rich coal by anaerobic fermentation[J]. Journal of China Coal Society,2023,48(2):891−899
[61] GAO Di,GUO Huiling,GUO Bianqing,et al. Impact of microbially enhanced coalbed methane on the pore structure of coal[J]. Frontiers in Earth Science,2022,10:869917.
[62] SU Erlei,LIANG Yunpei,CHANG Xianyin,et al. Effects of cyclic saturation of supercritical CO2 on the pore structures and mechanical properties of bituminous coal:An experimental study[J]. Journal of CO2 Utilization,2020,40:101208.
[63] XU Jizhao,ZHAI Cheng,LIU Shimin,et al. Feasibility investigation of cryogenic effect from liquid carbon dioxide multi cycle fracturing technology in coalbed methane recovery[J]. Fuel,2017,206:371−380.
[64] 汤勇,胡世莱,汪勇,等. “注入–压裂–返排”全过程的CO2相态特征:以鄂尔多斯盆地神木气田致密砂岩气藏SH52井为例[J]. 天然气工业,2019,39(9):58−64
TANG Yong,HU Shilai,WANG Yong,et al. Phase behaviors of CO2 in the whole process of injection–fracturing–flowback:A case study of Well SH52 in a tight sandstone gas reservoir of the Shenmu gas field,Ordos Basin[J]. Natural Gas Industry,2019,39(9):58−64
[65] CAO Yunxing,ZHANG Junsheng,ZHAI Hong,et al. CO2 gas fracturing:A novel reservoir stimulation technology in low permeability gassy coal seams[J]. Fuel,2017,203:197−207.
[66] 周动,冯增朝,王辰,等. 煤吸附甲烷结构变形的多尺度特征[J]. 煤炭学报,2019,44(7):2159−2166
ZHOU Dong,FENG Zengchao,WANG Chen,et al. Multi–scale characteristics of coal structure deformation during methane adsorption[J]. Journal of China Coal Society,2019,44(7):2159−2166
[67] RANATHUNGA A S,PERERA M S A,RANJITH P G,et al. Super–critical CO2 saturation–induced mechanical property alterations in low rank coal:An experimental study[J]. The Journal of Supercritical Fluids,2016,109:134−140.
[68] YANG Jianfeng,LIAN Haojie,LI Li. Investigating the effect of confining pressure on fracture toughness of CO2–saturated coals[J]. Engineering Fracture Mechanics,2021,242:107496.
[69] YANG Jianfeng,LIAN Haojie,LIANG Weiguo,et al. Experimental investigation of the effects of supercritical carbon dioxide on fracture toughness of bituminous coals[J]. International Journal of Rock Mechanics and Mining Sciences,2018,107:233−242.
[70] 吴韬,梁卫国,于永军,等. 超临界CO2浸泡作用下煤岩力学特性应变率效应实验研究[J]. 岩石力学与工程学报,2023,42(11):2727−2738
WU Tao,LIANG Weiguo,YU Yongjun,et al. Experimental study of loading strain rate effect on mechanical properties of supercritical CO2 soaked coal rock[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(11):2727−2738
[71] 韦婕,陈跃都,梁卫国. 超临界CO2作用下煤体结构面剪切硬化特征与本构模型[J]. 煤炭学报,2023,48(12):4487−4498
WEI Jie,CHEN Yuedu,LIANG Weiguo. Shear hardening characteristics and constitutive model of coal structural plane after supercritical CO2 soaking[J]. Journal of China Coal Society,2023,48(12):4487−4498
[72] 孙泽东,冯淦,宋选民,等. CO2状态与各向异性对烟煤渐进破坏特征影响的实验研究[J]. 岩石力学与工程学报,2022,41(1):70−81
SUN Zedong,FENG Gan,SONG Xuanmin,et al. Effects of CO2 state and anisotropy on the progressive failure characteristics of bituminous coal:An experimental study[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(1):70−81
[73] ZHANG X G,RANJITH P G,RANATHUNGA A S,et al. Variation of mechanical properties of bituminous coal under CO2 and H2O saturation[J]. Journal of Natural Gas Science and Engineering,2019,61:158−168.
[74] NIU Qinghe,CAO Liwen,SANG Shuxun,et al. Experimental study on the softening effect and mechanism of anthracite with CO2 injection[J]. International Journal of Rock Mechanics and Mining Sciences,2021,138:104614.
[75] LIFSHITS S K,CHALAYA O N,KASHIRTSEV V A. Extraction of brown coal with carbon dioxide at supercritical parameters[J]. Solid Fuel Chemistry,2012,46(2):85−89.
[76] 王盼盼. 煤的超临界二氧化碳抽提物GC/MS/AMDIS分析[D]. 泰安:山东科技大学,2015.
WANG Panpan. The GC/MS/AMDIS analysis of supercritical carbon dioxide extracts from coals[D]. Taian:Shandong University of Science and Technology,2015.
[77] OREM W H,TATU C A,LERCH H E,et al. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin,Wyoming,USA[J]. Applied Geochemistry,2007,22(10):2240−2256.
[78] OREM W H,VOYTEK M A,JONES E J,et al. Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions[J]. Organic Geochemistry,2010,41(9):997−1000.
[79] ULRICH G,BOWER S. Active methanogenesis and acetate utilization in Powder River Basin coals,United States[J]. International Journal of Coal Geology,2008,76(1/2):25−33.
[80] 崔方智,周韬,张兵. 煤层中 CO2注入运移瞬变电磁法监测技术探索[J]. 物探与化探,2020,44(3):573−581
CUI Fangzhi,ZHOU Tao,ZHANG Bing. TEM monitoring technology of CO2 injection and transport in coal seam[J]. Geophysical and Geochemical Exploration,2020,44(3):573−581
[81] 何学秋,田向辉,宋大钊. 煤层 CO2安全封存研究进展与展望[J]. 煤炭科学技术,2022,50(1):212−219
HE Xueqiu,TIAN Xianghui,SONG Dazhao. Progress and expectation of CO2 sequestration safety in coal seams[J]. Coal Science and Technology,2022,50(1):212−219
[82] 苏现波,丁锐,赵伟仲,等. 准南低质煤层气原位提质增量研究[J]. 煤炭学报,2025,50(1):532−545
SU Xianbo,DING Rui,ZHAO Weizhong,et al. Study on in–situ microbial methanogenesis of CO2 and in–situ inhibition of H2S and increase of coalbed methane production in low–quality coalbed methane of the southern Junggar Basin[J]. Journal of China Coal Society,2025,50(1):532−545
[83] 张兵,叶建平,张晓朋. 深部煤层注入/埋藏二氧化碳开采煤层气选区评价技术[C]//中国煤炭学会煤层气专业委员会,中国石油学会石油地质专业委员会. 2011年煤层气学术研讨会论文集. 中联煤层气有限责任公司,2011:106 –113.
[84] 郑永旺,崔轶男,李鑫,等. 深层高阶煤层CO2–ECBM技术研究与应用启示:以沁水盆地晋中地区为例[J]. 石油实验地质,2025,47(1):143−152
ZHENG Yongwang,CUI Yinan,LI Xin,et al. Research and insights for application of CO2–ECBM technology in deep high–rank coal seams:A case study of Jinzhong Block,Qinshui Basin[J]. Petroleum Geology & Experiment,2025,47(1):143−152
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons