Coal Geology & Exploration
Abstract
Objective and Method Currently, there remains a lack of criteria for technical certification, designation, and classification of carbon dioxide (CO2) storage technologies due to their cross-disciplinary nature and ambiguous scopes. To address this issue, this study proposes technical certification criteria and designation principles, as well as analyzes four types of common CO2 storage technologies: geologic storage, underground space storage, ocean water storage, and utilization and storage. Accordingly, a classification philosophy and scheme for these technologies is determined.Results and Conclusions In terms for technical certification criteria, a CO2 storage technology has to meet four criteria: (1) it must enable effective, long-term to permanent separation of CO2 from the atmosphere; (2) it must be anthropogenic activity aimed at reducing atmospheric CO2 beyond statutory requirements; (3) it should do no significant harm to the environment. Regarding the designation in Chinese and English (including English abbreviations) for CO2 storage technologies, the following principles should be followed: (1) well-known technology names should be used without modification, while technologies similar to those widely recognized should be designated following the designation principles of the latter. For emerging technologies, the most frequently used Chinese and English names, as identified using academic search engines, shall be used. For English terms, "sequestration" and "storage" differ slightly in the field of carbon removal. Specifically, "sequestration" emphasizes scientific mechanisms, while "storage" highlights a broader scale or is more engineering-oriented. A generally hierarchical classification philosophy is proposed in this study. First, based on their differences in storage environments, CO2 storage technologies can be divided into terrestrial and marine categories. Second, several types can be determined based on CO2 storage space and mechanism. Third, further classification is performed by storage depth and scale. Fourth, the minimum types can be determined by further classification by storage proportion and time. Using this classification philosophy, a classification scheme for CO2 storage technologies is determined, consisting of two levels and seven indicators. The first level comprises storage environment, storage space, and storage mechanism, which are three qualitative indicators. The second level is composed of sub-class, model, grade, and pattern, corresponding to four quantitative indicators, i.e., storage depth, storage scale, storage proportion, and storage time, respectively.
Keywords
CO2 storage, technical certification criterion, designation principle, classification philosophy and scheme, technological classification, hierarchical classification, classification scheme, technical system
DOI
10.12363/issn.1001-1986.25.07.0485
Recommended Citation
MA Fubo, YANG Xuechao, ZHOU Zhengwu,
et al.
(2026)
"Designation and classification of CO2 storage technologies,"
Coal Geology & Exploration: Vol. 54:
Iss.
1, Article 6.
DOI: 10.12363/issn.1001-1986.25.07.0485
Available at:
https://cge.researchcommons.org/journal/vol54/iss1/6
Reference
[1] SIMPSON J,COX P,INGRAM G,et al. Strategic analysis of the global status of carbon capture and storage:Economics assessment[R]. GCCSI (Global Carbon Capture and Storage Institute),2009.
[2] IPCC. Special report on carbon dioxide capture and storage[M]. Cambridge:Cambridge University Press,2005.
[3] IPCC. Climate change 2022:Mitigation of climate change[M]. Cambridge:Cambridge University Press,2023.
[4] 罗二辉,胡永乐,李昭. CO2地质埋存技术与应用[J]. 新疆石油天然气,2013,9(3):14−21.
LUO Erhui,HU Yongle,LI Zhao. Storage of CO2 in geologic formations and its application[J]. Xinjiang Oil & Gas,2013,9(3):14−21.
[5] 周守为,李清平,朱军龙,等. CO2海洋封存的思考与新路径探索[J]. 天然气工业,2024,44(4):1−10.
ZHOU Shouwei,LI Qingping,ZHU Junlong,et al. Consideration on CO2 marine storage and exploration of new paths[J]. Natural Gas Industry,2024,44(4):1−10.
[6] Framework for the Certification of Permanent Carbon Removal. Carbon agriculture,and product carbon storage[R]. European Union Council,2024-11-19.
[7] 蔡博峰,李琦,张贤,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS 路径研究[R]. 生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心,2021.
[8] 魏子俊,高科. 深部咸水层CO2封存的热–水–力模型研究[J]. 地质科技通报,2025,44(4):129−141.
WEI Zijun,GAO Ke. CO2 sequestration in deeep saline aquifers with integrated thermo-hydro-mechanical model[J]. Geological Science and Technology,2025,44(4):129−141.
[9] 郭威,张烨毓,徐强,等. 页岩领域二氧化碳封存技术研究进展综述[J]. 四川地质学报,2025,45(增刊2):191−195.
[10] 姜仁霞,于洪观. 深部煤层碳封存研究进展和面临的关键科技问题[J]. 中国煤炭地质,2024,36(9):7−14.
JIANG Renxia,YU Hongguan. Research development and key scientific and technical problems on CO2 sequestration in deep coal seams[J]. Coal Geology of China,2024,36(9):7−14.
[11] 廖松林,马诗佳,夏菖佑,等. 玄武岩CO2矿化封存监测方法和技术体系研究[J]. 水文地质工程地质,2024,51(4):41−52.
LIAO Songlin,MA Shijia,XIA Changyou,et al. Research on monitoring methods and technical systems of CO2 mineralization in basalt formation[J]. Hydrogeology & Engineering Geology,2024,51(4):41−52.
[12] ROMÃO I S,GANDO–FERREIRA L M,DA SILVA M M V G,et al. CO2 sequestration with serpentinite and metaperidotite from Northeast Portugal[J]. Minerals Engineering,2016,94:104−114.
[13] 郭肖,冯金,王鹏鲲,等. 碳酸盐岩气藏注CO2埋存及提高采收率机理研究进展[J]. 断块油气田,2023,30(6):888−894.
GUO Xiao,FENG Jin,WANG Pengkun,et al. Progress on mechanism of CO2 injection for storage and enhanced gas recovery in carbonate gas reservoir[J]. Fault–Block Oil & Gas Field,2023,30(6):888−894.
[14] 亓增刚,王磊,蔺国华,等. 废弃煤矿地下空间资源应用研究现状与展望[J]. 矿产保护与利用,2025,45(5):124−138.
QI Zenggang,WANG Lei,LIN Guohua,et al. Current situation and prospects of applied research on underground space resources of abandoned coal mines[J]. Conservation and Utilization of Mineral Resources,2025,45(5):124−138.
[15] 肖朋,陈光进,汤涵,等. 一种二氧化碳封存方法:CN115076594B[P]. 2023-08-25.
[16] 林振洲,刘东明,张乐,等. 我国盐穴资源评价及调查技术研究[J]. 水文地质工程地质,2024,51(4):53−65.
LIN Zhenzhou,LIU Dongming,ZHANG Le,et al. Evaluation and investigation technology of salt cavern resources in China[J]. Hydrogeology & Engineering Geology,2024,51(4):53−65.
[17] 程文波,王开发,付星辉,等. 浅析盐岩溶腔封存二氧化碳技术[J]. 中国井矿盐,2023,54(6):16−18.
CHENG Wenbo,WANG Kaifa,FU Xinghui,et al. Brief analysis of carbon dioxide storage in salt caverns[J]. China Well and Rock Salt,2023,54(6):16−18.
[18] YANG Chunhe,WANG Tongtao,CHEN Haisheng. Theoretical and technological challenges of deep underground energy storage in China[J]. Engineering,2023,25:168−181.
[19] 卜宪标,王一鸣,刘石,等. 废弃矿地下空间储能方案及性能[J]. 西安交通大学学报,2024,58(10):145−155.
BU Xianbiao,WANG Yiming,LIU Shi,et al. Energy storage scheme and performance evaluation in underground spaces of abandoned mines[J]. Journal of Xi’an Jiaotong University,2024,58(10):145−155.
[20] 彭天玥,唐得昊,刘丽强,等. 基于专利分析的海洋碳封存技术[J]. 中国科学院院刊,2022,37(9):1347−1359.
PENG Tianyue,TANG Dehao,LIU Liqiang,et al. Global technology of ocean carbon sequestration based on patent analysis[J]. Bulletin of Chinese Academy of Sciences,2022,37(9):1347−1359.
[21] 陈建文,骆迪,袁勇,等. 全球海洋地质碳封存典型案例对中国的启示[J]. 海洋地质前沿,2025,41(3):1−13.
CHEN Jianwen,LUO Di,YUAN Yong,et al. Typical cases of global marine geological carbon storage and its implications for China[J]. Marine Geology Frontiers,2025,41(3):1−13.
[22] 汪鹏轩. CO2海水封存流动–传质过程数值模拟研究[D]. 大连:大连理工大学,2023.
WANG Pengxuan. Numerical simulation of CO2 seawater sequestration flow–mass transfer process[D]. Dalian:Dalian University of Technology,2023.
[23] ZHANG Weixin,SHAO Yuanhu,ZOU Xiaoming,et al. Fluctuating “soil CO2–lake”is key for understanding global climate change[J]. Innovation,2024,5(4):100642.
[24] GOLOMB D,PENNELL S,RYAN D,et al. Ocean sequestration of carbon dioxide:Modeling the deep ocean release of a dense emulsion of liquid CO2–in–water stabilized by pulverized limestone particles[J]. Environmental Science & Technology,2007,41(13):4698−4704.
[25] 柳波,高硕,许振强,等. 海洋直接注入CO2封存技术方法综述[J]. 地质论评,2023,69(4):1449−1464.
LIU Bo,GAO Shuo,XU Zhenqiang,et al. A review of CO2 sequestration technology by direct injection in the ocean[J]. Geological Review,2023,69(4):1449−1464.
[26] 张菊,季玉轩,郭会荣,等. 海底沉积层裂隙中水合物封堵CO2效果与失稳条件实验[J]. 地质科技通报,2025,44(5):285−292.
ZHANG Ju,JI Yuxuan,GUO Huirong,et al. Experimental study on the CO2 plugging effect and instability conditions of hydrates in fractures in seafloor[J]. Bulletin of Geological Science and Technology,2025,44(5):285−292.
[27] 赵洪伟. 海洋天然气水合物相平衡条件模拟实验及探测技术研究[D]. 长春:吉林大学,2005.
ZHAO Hongwei. Study on gas hydrate phase equilibrium condition and simulation experiment and testing technology[D]. Changchun:Jilin University,2005.
[28] 卓成刚,刘秀慧. CO2海洋封存技术国内外研究进展与启示[J]. 安全与环境工程,2017,24(5):84−89.
ZHUO Chenggang,LIU Xiuhui. Research progress and enlightenment of CO2 ocean sequestration technology at home and abroad[J]. Safety and Environmental Engineering,2017,24(5):84−89.
[29] LEE S,LIANG Liyuan,RIESTENBERG D,et al. CO2 hydrate composite for ocean carbon sequestration[J]. Environmental Science & Technology,2003,37(16):3701−3708.
[30] 吴昱辰,左晓琳,王兴军,等. 热力学和动力学促进剂下CO2水合物动力学与形貌研究[J]. 化学工程,2025,53(8):77−82.
WU Yuchen,ZUO Xiaolin,WANG Xingjun,et al. Kinetics and morphology of CO2 hydrates under thermodynamic accelerator and kinetic accelerator[J]. Chemical Engineering,2025,53(8):77−82.
[31] WU Mingyu,SUN Huiru,LIU Qingbin,et al. Enhancing CO2 sequestration safety with hydrate caps:A comparative study of CO2 injection modes and saturation effects[J]. Energy,2025,320:135044.
[32] 朱跃钊,廖传华,王重庆,等. 二氧化碳的减排与资源化利用[M]. 北京:化学工业出版社,2011.
[33] 罗文翰,刘庭源,李结瑶,等. 二氧化碳共聚物改性淀粉基黏合剂的制备与性能[J]. 食品科技,2022,47(8):220−226.
LUO Wenhan,LIU Tingyuan,LI Jieyao,et al. Preparation and properties of carbon dioxide copolymer modified starch based adhesive[J]. Food Science and Technology,2022,47(8):220−226.
[34] 白振敏,郭姝媛,杨一群,等. 微生物利用CO2及其低碳衍生物为原料制备粮食类产物的研究进展[J]. 生物工程学报,2024,40(8):2731−2746.
BAI Zhenmin,GUO Shuyuan,YANG Yiqun,et al. Microbial production of food compounds with carbon dioxide and derived low–carbon molecules as substrates[J]. Chinese Journal of Biotechnology,2024,40(8):2731−2746.
[35] 李文平,曹丹平,乔伟,等. 深部碳储空间探测与地质评价关键技术[J]. 煤炭学报,2025,50(5):2333−2354.
LI Wenping,CAO Danping,QIAO Wei,et al. Key technologies for exploration and geological evaluation of deep carbon storage spaces[J]. Journal of China Coal Society,2025,50(5):2333−2354.
[36] 孙亮,陈文颖. 中国陆上油藏CO2封存潜力评估[J]. 中国人口·资源与环境,2012,22(6):76−81.
SUN Liang,CHEN Wenying. Assessment of CO2 geo–storage potential in onshore oil reservoirs,China[J]. China Population,Resources and Environment,2012,22(6):76−81.
[37] 刘妮,张国昌,R E 罗杰斯. 二氧化碳气体水合物生成特性的实验研究[J]. 上海理工大学学报,2007,29(4):405−408.
LIU Ni,ZHANG Guochang,ROGERS R E. Experimental study of CO2 gas hydrates formation[J]. Journal of University of Shanghai for Science and Technology,2007,29(4):405−408.
[38] Global CCS Institute. Global status of CCS (2023)[R]. https://www.globalccsinstitute.com/resources/publications–reports–research/strategic–analysis–global–status–ccs/.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons