Coal Geology & Exploration
Abstract
Objective Carbon sequestration technology represents a core approach to achieving carbon neutrality. However, its large-scale application remains constrained by multiple technical and scientific challenges. Methods Based on an analysis of existing carbon sequestration projects, this study identified four major challenges in carbon sequestration: (1) high uncertainty in the assessment of CO2 sequestration capacity; (2) low injectivity of low-permeability discontinuous reservoirs; (3) a limited understanding of long-term mechanical stability; and (4) significant difficulty in assessing the risks of CO2 leakage. Results To address these challenges, this study proposes the common issues currently faced by carbon sequestration technology, and, accordingly, determines three urgent critical scientific issues. First, there is an urgent need to develop universal geological theories applicable to carbon sequestration projects and, accordingly, to improve systems for evaluating effective sequestration capacity based on reservoir injectivity, tightness, and stability. Second, disturbance patterns in carbon sequestration projects should be investigated, and multi-field, multi-phase, and multi-scale constitutive relationships should be established, with the purpose of enhancing prediction accuracy. Third, it is necessary to advance the risk assessment, monitoring, and remediation theories applicable to carbon sequestration projects, as well as to integrate multi-physical-field coupling simulation with low-cost, high-sensitivity monitoring technologies. These efforts are essential for establishing closed-loop risk management systems. Conclusions In the future, it is advisable to address these three critical scientific issues through theoretical innovation, technological development, and interdisciplinary collaboration. These efforts will help optimize the evaluation of CO2 sequestration capacity, improve CO2 sequestration efficiency in reservoirs within basins, ensure the long-term stability of sequestration sites, and mitigate leakage risks. These advances will provide robust support for the large-scale applications of carbon sequestration and the achievement of global carbon neutrality.
Keywords
carbon sequestration, critical scientific issue, sequestration capacity, impurity gas, risk assessment
DOI
10.12363/issn.1001-1986.25.09.0689
Recommended Citation
LI Xiaochun, LIU Tianyu, ZHANG Liwei,
et al.
(2026)
"Carbon sequestration technology: Challenges and urgent critical scientific issues,"
Coal Geology & Exploration: Vol. 54:
Iss.
1, Article 3.
DOI: 10.12363/issn.1001-1986.25.09.0689
Available at:
https://cge.researchcommons.org/journal/vol54/iss1/3
Reference
[1] 张力为,李琦. 二氧化碳地质利用与封存的风险管理[M]. 北京:科学出版社,2020.
[2] IEA. Global energy review 2025[EB/OL]. [2025-07-16]. https://iea.blob.core.windows.net/assets/5b169aa1–bc88–4c96–b828–aaa50406ba80/GlobalEnergyReview2025.pdf.
[3] 杨斌,张英佳,李玉阳,等. 面向碳中和的燃烧反应动力学研究进展与展望[J]. 工程热物理学报,2022,43(8):1993−2008
YANG Bin,ZHANG Yingjia,LI Yuyang,et al. Research progress and prospect of combustion reaction kinetics for carbon neutrality[J]. Journal of Engineering Thermophysics,2022,43(8):1993−2008
[4] XU Tianfu,TIAN Hailong,ZHU Huixing,et al. China actively promotes CO2 capture,utilization and storage research to achieve carbon peak and carbon neutrality[J]. Advances in Geo–Energy Research,2022,6(1):1−3.
[5] 刘世奇,皇凡生,杜瑞斌,等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探,2023,51(2):158−174
LIU Shiqi,HUANG Fansheng,DU Ruibin,et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J]. Coal Geology & Exploration,2023,51(2):158−174
[6] 马馨蕊,梁杰,李清,等. 咸水层CO2地质封存研究进展及前景展望[J]. 海洋地质前沿,2024,40(10):1−18
MA Xinrui,LIANG Jie,LI Qing,et al. Progress and prospects of CO2 geological storage in saline aquifer[J]. Marine Geology Frontiers,2024,40(10):1−18
[7] 魏恒飞,方杰,时俊杰,等. 深部地下储存空间利用理论、技术及前景[J]. 煤田地质与勘探,2025,53(2):67−83
WEI Hengfei,FANG Jie,SHI Junjie,et al. Theories,technologies,and prospects for the utilization of deep underground storage space[J]. Coal Geology & Exploration,2025,53(2):67−83
[8] 张金超,桑树勋,韩思杰,等. 不同含水性无烟煤CO2吸附行为及其对地质封存的启示[J]. 煤田地质与勘探,2022,50(9):96−103
ZHANG Jinchao,SANG Shuxun,HAN Sijie,et al. CO2 adsorption of anthracite with different moisture contents and its implications for geological storage[J]. Coal Geology & Exploration,2022,50(9):96−103
[9] 赵兴雷,马瑞,李国涛,等. 神华咸水层CO2封存监测安全评价体系的研究[J]. 化工进展,2016,35(增刊2):389−395
ZHAO Xinglei,MA Rui,LI Guotao,et al. Studies on multi–factor safety system in the monitoring process for Shenhua CO2 saline layers storage project[J]. Chemical Industry and Engineering Progress,2016,35(Sup.2):389−395
[10] 任韶然,李德祥,张亮,等. 地质封存过程中CO2泄漏途径及风险分析[J]. 石油学报,2014,35(3):591−601
REN Shaoran,LI Dexiang,ZHANG Liang,et al. Leakage pathways and risk analysis of carbon dioxide in geological storage[J]. Acta Petrolei Sinica,2014,35(3):591−601
[11] 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探,2018,46(5):1−9
SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration,2018,46(5):1−9
[12] 李琦,刘桂臻,张建,等. 二氧化碳地质封存环境监测现状及建议[J]. 地球科学进展,2013,28(6):718−727
LI Qi,LIU Guizhen,ZHANG Jian,et al. Status and suggestion of environmental monitoring for CO2 geological storage[J]. Advances in Earth Science,2013,28(6):718−727
[13] ABDULLA A,HANNA R,SCHELL K R,et al. Explaining successful and failed investments in U. S. carbon capture and storage using empirical and expert assessments[J]. Environmental Research Letters,2021,16(1):014036.
[14] GCCSI. Global status of CCS 2024[EB/OL]. [2026-01-05]. https://www.globalccsinstitute.com/publications/global–status–of–ccs–2024/.
[15] LUPION M,HERZOG H J. NER300:Lessons learnt in attempting to secure CCS projects in Europe[J]. International Journal of Greenhouse Gas Control,2013,19:19−25.
[16] Lifecycle risk management for integrated CCS projects:ISO/TR 27918–2018[S]. International Organization for Standardization,2018.
[17] WANG Nan,AKIMOTO K,NEMET G F. What went wrong? Learning from three decades of carbon capture,utilization and sequestration (CCUS) pilot and demonstration projects[J]. Energy Policy,2021,158:112546.
[18] SUN Yanting,LI Yanbin,ZHANG Feng,et al. Obstacle identification and analysis to the commercialization of CCUS technology in China under the carbon neutrality target[J]. Energies,2022,15(11):3964.
[19] WEI Ning,LI Xiaochun,LIU Shengnan,et al. A strategic framework for commercialization of carbon capture,geological utilization,and storage technology in China[J]. International Journal of Greenhouse Gas Control,2021,110:103420.
[20] Inside Climate News,A Carbon Capture Monitoring Well Leaked in Illinois. Most residents found out when the world did[EB/OL]. [2025-07-09]. https://insideclimatenews.org/news/03102024/illinois–carbon–capture–monitoring–well–leak/.
[21] GCCSI. 全球碳捕集与封存现状2020[EB/OL]. [2026-01-05]. https://ccus.bnu.edu.cn/docs/2021–01/20210125161532461780.pdf.
[22] 周银邦,王锐,程传捷,等. 阿尔及利亚In Salah油田CO2地质封存示范工程的启示[J]. 地球科学与环境学报,2023,45(6):1368−1379
ZHOU Yinbang,WANG Rui,CHENG Chuanjie,et al. Enlightenment of CO2 geological storage demonstration project in In Salah oilfield,Algeria[J]. Journal of Earth Sciences and Environment,2023,45(6):1368−1379
[23] BUSCHECK T A,BIELICKI J M,WHITE J A,et al. Managing geologic CO2 storage with pre–injection brine production in tandem reservoirs[J]. Energy Procedia,2017,114:4757−4764.
[24] BOAIT F C,WHITE N J,BICKLE M J,et al. Spatial and temporal evolution of injected CO2 at the Sleipner Field,North Sea[J]. Journal of Geophysical Research:Solid Earth,2012,117(B3):2011JB008603.
[25] MARSHALL J P. A social exploration of the west Australian gorgon gas,carbon capture and storage project[J]. Clean Technologies,2022,4(1):67−90.
[26] 李小春. 二氧化碳捕集利用与封存词典[M]. 广州:世界图书出版公司,2013.
[27] 蔡博峰,李琦,张贤,等. 中国区域二氧化碳地质封存经济可行性研究:中国二氧化碳捕集利用与封存(CCUS)年度报告(2024)[R]. 生态环境部规划院,2024.
[28] IEA. Technology roadmap:Carbon capture and storage (2013Edition)[EB/OL]. [2026-01-06]. https://www. iea. org/reports/technology–roadmap–carbon–capture–and–storage–2013.
[29] BACHU S,SHAW J. Evaluation of the CO2 sequestration capacity in Alberta’s oil and gas reservoirs at depletion and the effect of underlying aquifers[J]. Journal of Canadian Petroleum Technology,2003,42(9):PETSOC–03–09–02.
[30] 张炜,李义连,郑艳,等. 二氧化碳地质封存中的储存容量评估:问题和研究进展[J]. 地球科学进展,2008,23(10):1061−1069
ZHANG Wei,LI Yilian,ZHENG Yan,et al. CO2 storage capacity estimation in geological sequestration:Issues and research progress[J]. Advances in Earth Science,2008,23(10):1061−1069
[31] 桑树勋,刘世奇,朱前林,等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报,2023,48(7):2700−2716
SANG Shuxun,LIU Shiqi,ZHU Qianlin,et al. Research progress on technical basis of synergy between CO2 geological storage potential and energy resources[J]. Journal of China Coal Society,2023,48(7):2700−2716
[32] BRADSHAW J,BACHU S,BONIJOLY D,et al. CO2 storage capacity estimation:Issues and development of standards[J]. International Journal of Greenhouse Gas Control,2007,1(1):62−68.
[33] 蔡博峰,李琦,张贤. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R]. 生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心,2021.
[34] BELLO A,DORHJIE D B,IVANOVA A,et al. Numerical sensitivity analysis of CO2 mineralization trapping mechanisms in a deep saline aquifer[J]. Chemical Engineering Science,2024,283:119335.
[35] HORTLE A,MICHAEL K,AZIZI E. Assessment of CO2 storage capacity and injectivity in saline aquifers–comparison of results from numerical flow simulations,analytical and generic models[J]. Energy Procedia,2014,63:3553−3562.
[36] LI Qi,LIU Guizhen. Risk assessment of the geological storage of CO2:A review[M]//VISHAL V,SINGH T N. Geologic carbon sequestration. Cham:Springer International Publishing,2016:249–284.
[37] 许晓艺,李琦,谭永胜,等. 日本苫小牧CO2海底地质封存监测技术分析及其启示[J]. 高校地质学报,2023,29(1):13−24
XU Xiaoyi,LI Qi,TAN Yongsheng,et al. Analysis of monitoring technologies of offshore CO2 geological storage in Japan’s Tomakomai and its enlightenment[J]. Geological Journal of China Universities,2023,29(1):13−24
[38] 祁生文,郑博文,王赞,等. 二氧化碳地质利用与封存场址的地质评价[J]. 中国科学:地球科学,2023,53(9):1937−1957
QI Shengwen,ZHENG Bowen,WANG Zan,et al. Geological evaluation for the carbon dioxide geological utilization and storage (CGUS) site:A review[J]. Science China:Earth Sciences,2023,53(9):1937−1957
[39] KOU Zuhao,WANG Heng,ALVARADO V. Reservoir characterization and multiphase flow property in the upper Minnelusa sandstone:Implication for geological carbon storage[J]. Advances in Geo–Energy Research,2022,6(6):535−536.
[40] PHOON K K,CHING J,SHUKU T. Challenges in data–driven site characterization[J]. Georisk:Assessment and Management of Risk for Engineered Systems and Geohazards,2022,16(1):114−126.
[41] 郭建强,文冬光,张森琦,等. 中国主要沉积盆地二氧化碳地质储存潜力与适宜性评价图集[M]. 北京:地质出版社,2014.
[42] 李姜辉,李鹏春,李彦尊,等. 离岸碳捕集利用与封存技术体系研究[J]. 中国工程科学,2023,25(2):173−186
LI Jianghui,LI Pengchun,LI Yanzun,et al. Technology system of offshore carbon capture,utilization,and storage[J]. Strategic Study of CAE,2023,25(2):173−186
[43] 张贤,杨晓亮,鲁玺. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京:中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023.
[44] WEI Ning,GILL M,CRANDALL D,et al. CO2 flooding properties of Liujiagou sandstone:Influence of sub–core scale structure heterogeneity[J]. Greenhouse Gases:Science and Technology,2014,4(3):400−418.
[45] 刘义刚. 渤海油田低渗储层开采技术研究进展与展望[J]. 中国海上油气,2024,36(1):117−124
LIU Yigang. Research progress and prospect of low–permeability reservoir exploitation technologies in Bohai oilfield[J]. China Offshore Oil and Gas,2024,36(1):117−124
[46] 刁玉杰,朱国维,金晓琳,等. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报,2017,36(6):1088−1095
DIAO Yujie,ZHU Guowei,JIN Xiaolin,et al. Theoretical potential assessment of CO2 geological utilization and storage in the Sichuan Basin[J]. Geological Bulletin of China,2017,36(6):1088−1095
[47] 梁瀚,文龙,冉崎,等. 四川盆地龙门山前北段构造演化特征及其油气地质意义[J]. 石油勘探与开发,2022,49(3):478−490
LIANG Han,WEN Long,RAN Qi,et al. Structural characteristics and implications on oil/gas accumulation in north segment of the Longmenshan piedmont,northwestern Sichuan Basin[J]. Petroleum Exploration and Development,2022,49(3):478−490
[48] 刘岩,申建,刘忠,等. 渤海湾盆地大城区块深部煤层含气性及储层非均质性特征[J/OL]. 煤炭学报,2025:1–13 [2025-06-24]. https://doi.org/10.3225/j.cnki.jccs.2025.0133.
LIU Yan,SHEN Jian,LIU Zhong,et al. Gas–bearing and reservoir heterogeneity characteristics of deep coalbed reservoir in the Dacheng Block,Bohai Bay Basin[J/OL]. Journal of China Coal Society,2025:1–13 [2025-06-24]. https://doi.org/10.3225/j.cnki.jccs.2025.0133.
[49] 李小春,梅开元,蔡雨娜,等. 提高CO2封存强度的多层协同抽注技术[J]. 工程科学与技术,2022,54(1):167−176
LI Xiaochun,MEI Kaiyuan,CAI Yuna,et al. Improvement of CO2 sequestration intension with collaborative pumping–injection technologies in multi–formations[J]. Advanced Engineering Sciences,2022,54(1):167−176
[50] XU Tianfu,APPS J A,PRUESS K. Mineral sequestration of carbon dioxide in a sandstone–shale system[J]. Chemical Geology,2005,217(3/4):295−318.
[51] IZGEC O,DEMIRAL B,BERTIN H,et al. CO2 injection into saline carbonate aquifer formations I:Laboratory investigation[J]. Transport in Porous Media,2008,72(1):1−24.
[52] 刘思楠,张力为,苏学斌,等. 二氧化碳咸水层封存条件矿物溶解与沉淀化学反应建模与参数取值综述[J]. 水利水电技术,2020,51(11):13−22
LIU Sinan,ZHANG Liwei,SU Xuebin,et al. Review on modeling and parameter selection for chemical reactions of mineral dissolution and precipitation under the condition of CO2 sequestration in saline aquifers[J]. Water Resources and Hydropower Engineering,2020,51(11):13−22
[53] 柯怡兵,李义连,张炜,等. 岩盐沉淀对咸水层二氧化碳地质封存注入过程的影响:以江汉盆地为例[J]. 地质科技情报,2012,31(3):109−115
KE Yibing,LI Yilian,ZHANG Wei,et al. Impact of halite precipitation on CO2 injection into saline aquifers:A case study of Jianghan Basin[J]. Geological Science and Technology Information,2012,31(3):109−115
[54] 杨永钊,周进生,胡海文,等. CCUS–EOR产业的发展现状、经济效益与未来展望[J]. 中国矿业,2025,34(2):190−203
YANG Yongzhao,ZHOU Jinsheng,HU Haiwen,et al. Development status,economic benefits and future prospects of CCUS–EOR industry[J]. China Mining Magazine,2025,34(2):190−203
[55] 汤瑞佳,陈龙龙,江绍静,等. 低渗透油藏强化CO2/水交替注入驱油效果实验研究[J]. 非常规油气,2024,11(4):70−78
TANG Ruijia,CHEN Longlong,JIANG Shaojing,et al. Experimental study on the effect of enhanced CO2/water alternate flooding in low permeability reservoir[J]. Unconventional Oil & Gas,2024,11(4):70−78
[56] 白冰,陈勉,金衍. 超临界CO2吸附效应对页岩地层井壁稳定影响研究[J]. 岩石力学与工程学报,2023,42(增刊1):3508−3518
BAI Bing,CHEN Mian,JIN Yan. Study on the influence of supercritical carbon dioxide adsorption effect on wellbore stability of shale formation[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(Sup.1):3508−3518
[57] 孔维钟,白冰,李小春,等. CO2咸水层封存中组合盖层的密封效果研究[J]. 岩石力学与工程学报,2015,34(增刊1):2671−2678
KONG Weizhong,BAI Bing,LI Xiaochun,et al. Sealing efficiency of combined caprock for CO2 storage in saline aquifer[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup.1):2671−2678
[58] XIE Heping,LI Xiaochun,FANG Zhiming,et al. Carbon geological utilization and storage in China:Current status and perspectives[J]. Acta Geotechnica,2014,9(1):7−27.
[59] HE Miao,LI Qi,LI Xiaying. A new simulator for hydromechanical coupling analysis of injection–induced fault activation[J]. Geomechanics and Geophysics for Geo–Energy and Geo–Resources,2022,8(2):43.
[60] 陈博文,王锐,李琦,等. CO2地质封存盖层密闭性研究现状与进展[J]. 高校地质学报,2023,29(1):85−99
CHEN Bowen,WANG Rui,LI Qi,et al. Status and advances of research on caprock sealing properties of CO2 geological storage[J]. Geological Journal of China Universities,2023,29(1):85−99
[61] 蒋林桐,马天然,李采,等. CO2地质封存诱发断层活化和流体泄漏模型及数值研究[J]. 地质学报,2024,98(11):3418−3432
JIANG Lintong,MA Tianran,LI Cai,et al. The modeling and numerical study of fault activation and fluid leakage in CO2 geological storage[J]. Acta Geologica Sinica,2024,98(11):3418−3432
[62] STREIT J E,HILLIS R R. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock[J]. Energy,2004,29(9/10):1445−1456.
[63] CHEN Siyuan,LIU Jiangfeng,ZHANG Qi,et al. A critical review on deployment planning and risk analysis of carbon capture,utilization,and storage (CCUS) toward carbon neutrality[J]. Renewable and Sustainable Energy Reviews,2022,167:112537.
[64] 纪翔,马欣,韩耀杰,等. 箱体模拟地质封存CO2泄漏速度差异对植物的影响[J]. 农业工程学报,2018,34(2):242−247
JI Xiang,MA Xin,HAN Yaojie,et al. Effect of different leakage speeds on plants in carbon capture and storage by simulation in chamber[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(2):242−247
[65] XIAO Ting,CHEN Ting,MA Zhiwei,et al. A review of risk and uncertainty assessment for geologic carbon storage[J]. Renewable and Sustainable Energy Reviews,2024,189:113945.
[66] MATHIESON A,WRIGHT I,ROBERTS D,et al. Satellite imaging to monitor CO2 movement at Krechba,Algeria[J]. Energy Procedia,2009,1(1):2201−2209.
[67] VERDON J P,KENDALL J M,WHITE D J,et al. Linking microseismic event observations with geomechanical models to minimise the risks of storing CO2 in geological formations[J]. Earth and Planetary Science Letters,2011,305(1/2):143−152.
[68] METZ B,DAVIDSON O,CONINCK H D,et al. IPCC special report on carbon dioxide capture and storage[M]. New York:Cambridge University Press,2005.
[69] 甘满光,雷宏武,张力为,等. 基于数值模拟的CO2地质封存项目井筒泄漏风险定量化评价方法[J]. 工程科学与技术,2024,56(1):195−205
GAN Manguang,LEI Hongwu,ZHANG Liwei,et al. Quantitative evaluation method of wellbore leakage risk of CO2 geological storage project based on numerical simulation[J]. Advanced Engineering Sciences,2024,56(1):195−205
[70] SUN Haofei,WANG Haoxiang,ZENG Yimin,et al. Corrosion challenges in supercritical CO2 transportation,storage,and utilization:A review[J]. Renewable and Sustainable Energy Reviews,2023,179:113292.
[71] KUTCHKO B G,STRAZISAR B R,DZOMBAK D A,et al. Degradation of well cement by CO2 under geologic sequestration conditions[J]. Environmental Science & Technology,2007,41(13):4787−4792.
[72] LI Hailong,WILHELMSEN Ø,LYU Yuexia,et al. Viscosities,thermal conductivities and diffusion coefficients of CO2 mixtures:Review of experimental data and theoretical models[J]. International Journal of Greenhouse Gas Control,2011,5(5):1119−1139.
[73] LI H,YAN J,YAN J,et al. Impurity impacts on the purification process in oxy–fuel combustion based CO2 capture and storage system[J]. Applied Energy,2009,86(2):202−213.
[74] 郭小阳,辜涛,李早元,等. 水湿环境下硫化氢对固井水泥石的腐蚀机理[J]. 天然气工业,2015,35(10):93−98
GUO Xiaoyang,GU Tao,LI Zaoyuan,et al. Corrosion mechanism of hydrogen sulfide on well cement under water wet environments[J]. Natural Gas Industry,2015,35(10):93−98
[75] 谢健,魏宁,吴礼舟,等. CO2地质封存泄漏研究进展[J]. 岩土力学,2017,38(增刊1):181−188
XIE Jian,WEI Ning,WU Lizhou,et al. Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanics,2017,38(Sup.1):181−188
[76] CAHILL A G,JAKOBSEN R. Hydro–geochemical impact of CO2 leakage from geological storage on shallow potable aquifers:A field scale pilot experiment[J]. International Journal of Greenhouse Gas Control,2013,19:678−688.
[77] KHARAKA Y K,THORDSEN J J,KAKOUROS E,et al. Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site,Bozeman,Montana[J]. Environmental Earth Sciences,2010,60(2):273−284.
[78] FINLEY R J. An overview of the Illinois Basin–Decatur Project[J]. Greenhouse Gases:Science and Technology,2014,4(5):571−579.
[79] 张徽,张杨,郑长远,等. 我国碳储工程环境影响机理及其评价体系研究[J]. 环境保护科学,2014,40(6):121−125
ZHANG Hui,ZHANG Yang,ZHENG Changyuan,et al. Study of the environmental impact mechanism and assessment system of carbon geological storage engineering project in China[J]. Environmental Protection Science,2014,40(6):121−125
[80] 芮振华,张凤远,梁永图,等. “双碳”目标下高校开设碳储科学与工程专业的必要性与初步实践[J]. 石油钻采工艺,2023,45(3):385−392
RUI Zhenhua,ZHANG Fengyuan,LIANG Yongtu,et al. Necessity and preliminary practice of carbon storage science and engineering major in colleges under the dual carbon goals[J]. Oil Drilling & Production Technology,2023,45(3):385−392
[81] 孙杰,刘亢,谭克龙,等. CO2地质封存GIS基础数据平台建设初探[J]. 煤炭学报,2023,48(7):2936−2948
SUN Jie,LIU Kang,TAN Kelong,et al. Preliminary exploration on the construction of GIS basic data platform for CO2 geological storage[J]. Journal of China Coal Society,2023,48(7):2936−2948
[82] 明晓冉. 含CO2流体–泥质岩相互作用的地质记录及其对盖层封闭性的影响[D]. 长春:吉林大学,2017.
MING Xiaoran. Geologic records of CO2–bearing fluids–argillaceous rocks interaction and their effects on sealing ability of cap rocks[D]. Changchun:Jilin University,2017.
[83] KIM S,HOSSEINI S A. Geological CO2 storage:Incorporation of pore–pressure/stress coupling and thermal effects to determine maximum sustainable pressure limit[J]. Energy Procedia,2014,63:3339−3346.
[84] GAN Quan,ELSWORTH D. Analysis of fluid injection–induced fault reactivation and seismic slip in geothermal reservoirs[J]. Journal of Geophysical Research:Solid Earth,2014,119(4):3340−3353.
[85] RAZAK A A A,M SAAID I M,YUSOF M A M,et al. Physical and chemical effect of impurities in carbon capture,utilisation and storage[J]. Journal of Petroleum Exploration and Production Technology,2023,13(5):1235−1246.
[86] SIMONSEN K R,HANSEN D S,PEDERSEN S. Framework for CO2 impurity monitoring in CCUS infrastructure[J]. Carbon Capture Science & Technology,2025,16:100453.
[87] 王磊,陈礼鹏,谢广祥,等. CO2–荷载耦合作用下煤体细观统计损伤本构模型及验证[J]. 煤炭学报,2024,49(6):2630−2642
WANG Lei,CHEN Lipeng,XIE Guangxiang,et al. Meso–statistical damage constitutive model and validation of coal under CO2–load coupling[J]. Journal of China Coal Society,2024,49(6):2630−2642
[88] 李琦,蔡博峰,陈帆,等. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程,2019,37(2):13−21
LI Qi,CAI Bofeng,CHEN Fan,et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering,2019,37(2):13−21
[89] ZHU Daoyi,PENG Shudai,ZHAO Shuda,et al. Comprehensive review of sealant materials for leakage remediation technology in geological CO2 capture and storage process[J]. Energy & Fuels,2021,35(6):4711−4742.
[90] 柏明星,张志超,白华明,等. 二氧化碳地质封存系统泄漏风险研究进展[J]. 特种油气藏,2022,29(4):1−11
BAI Mingxing,ZHANG Zhichao,BAI Huaming,et al. Progress in leakage risk study of CO2 geosequestration system[J]. Special Oil & Gas Reservoirs,2022,29(4):1−11
[91] CHINOWSKY P,DIEKMANN J,GALOTTI V. Social network model of construction[J]. Journal of Construction Engineering and Management,2008,134(10):804−812.
[92] 李姜辉,余凤玲,牛雄伟,等. 海底碳封存监测技术体系研究及未来发展[J]. 地球科学进展,2023,38(11):1121−1144
LI Jianghui,YU Fengling,NIU Xiongwei,et al. Advances and future development of monitoring technologies for marine carbon storage[J]. Advances in Earth Science,2023,38(11):1121−1144
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons