Coal Geology & Exploration
Abstract
Objective and Method The urgent need to reduce global greenhouse gas emissions has driven the development of CO2 mineral trapping in basalts. To gain further insights into the microscopic mechanisms and reaction pathways of the mineral trapping, this study systematically reviews the geochemical reaction mechanisms involved, with a particular focus on the differences in reaction pathways between supercritical and dissolved CO2 injection, the coupling between mineral dissolution and carbonate precipitation, and the key factors influencing these reactions. Advances In the case of supercritical CO2 injection, CO2 mineral trapping is achieved through multi-step coupling reactions in nanoscale hydration layers. Under dissolved CO2 injection, the mineral trapping is primarily achieved through chemical dissolution and coordination reactions in the aqueous phase. In the geochemical reactions during CO2 mineral trapping in basalts, minerals such as olivine and pyroxene play a dominant role in the release of metal cations, while carbonate minerals including calcite, magnesite, and ankerite precipitate sequentially under different temperature and pressure conditions. Calcite exhibits broad temperature adaptability, whereas magnesite and ankerite are commonly observed under moderately high temperature conditions. Factors such as pH, temperature, CO2 partial pressure ($ {p}_{\text{C}{\text{O}}_{\text{2}}} $), fluid salinity, and rock heterogeneity exert significant impacts on reaction pathways and the evolution of minerals precipitated. Specifically, low pH accelerates the dissolution of primary minerals, while high pH creates favorable conditions for the precipitation of carbonate minerals. Elevated temperatures promote mineral dissolution, thus increasing the reaction rates. High CO2 partial pressure can enhance the solubility and reactivity of CO2, thereby accelerating mineral dissolution and carbonate formation. Fluid salinity affects the dissolution and precipitation processes of minerals by changing the ionic strength and chemical composition of solutions. Rock heterogeneity, including differences in mineral compositions and pore structures, affects fluid transport pathways and reaction efficiency. Furthermore, it facilitates localized precipitation and the formation of preferential flow channels, enabling sustained precipitation in low-flow and disconnected channels. It is necessary to investigate the impacts of rock heterogeneity on reservoir physical properties in the future. The abovementioned factors interact with each other, jointly determining the dynamic evolution of CO2 mineral trapping. Prospects Future research directions are proposed in this study based on the review, including the establishment of parameter optimization frameworks, the construction of high-resolution coupling models, and the optimization of CO2 injection strategies. These efforts will promote the large-scale applications and engineering implementation of CO2 storage in basalts. Additionally, a thorough investigation into the mechanisms behind the synergy among the influential factors of reactions will lay a solid theoretical foundation for the optimization of CO2 storage technology, thus further improving the efficiency and stability of CO2 mineral trapping.
Keywords
basalt, CO2 mineral trapping, geochemistry, microscopic mechanism, reaction mechanism
DOI
10.12363/issn.1001-1986.25.05.0331
Recommended Citation
MA Shijia, XIA Changyou, GAO Zhihao,
et al.
(2026)
"Advances in research on geochemistry of CO2 storage in basalts: Microscopic mechanisms and reaction pathways,"
Coal Geology & Exploration: Vol. 54:
Iss.
1, Article 23.
DOI: 10.12363/issn.1001-1986.25.05.0331
Available at:
https://cge.researchcommons.org/journal/vol54/iss1/23
Reference
[1] 联合国环境规划署. 2024年排放差距报告[R]. 2024-10-24.
[2] IEA. CO2 emissions in 2022[R]. Paris:IEA,2023.
[3] IPCC. Mitigation pathways compatible with 1.5 ℃ in the context of sustainable development[M]//IPCC. Global warming of 1.5 ℃. Cambridge:Cambridge University Press,2022:93–174.
[4] VOIGT M,MARIENI C,BALDERMANN A,et al. An experimental study of basalt–seawater–CO2 interaction at 130 ℃[J]. Geochimica et Cosmochimica Acta,2021,308:21−41.
[5] BACHU S. Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control,2015,40:188−202.
[6] 邓一荣,汪永红,赵岩杰,等. 碳中和背景下二氧化碳封存研究进展与展望[J]. 地学前缘,2023,30(4):429−439.
DENG Yirong,WANG Yonghong,ZHAO Yanjie,et al. Carbon dioxide storage in China:Current status,main challenges,and future outlooks[J]. Earth Science Frontiers,2023,30(4):429−439.
[7] WEI Bo,WANG Bowen,LI Xin,et al. CO2 storage in depleted oil and gas reservoirs:A review[J]. Advances in Geo–Energy Research,2023,9(2):76−93.
[8] 孙腾民,刘世奇,汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术,2021,49(11):10−20.
SUN Tengmin,LIU Shiqi,WANG Tao. Research advances on evaluation of CO2 geological storage potential in China[J]. Coal Science and Technology,2021,49(11):10−20.
[9] OELKERS E H,GISLASON S R,MATTER J. Mineral carbonation of CO2[J]. Elements,2008,4(5):333−337.
[10] 高志豪,夏菖佑,廖松林,等. 玄武岩CO2矿化封存潜力评估方法研究现状及展望[J]. 高校地质学报,2023,29(1):66−75.
GAO Zhihao,XIA Changyou,LIAO Songlin,et al. Progress of methods for assessing CO2 mineralization storage potential in basalt[J]. Geological Journal of China Universities,2023,29(1):66−75.
[11] 张成龙,郝文杰,胡丽莎,等. 泄漏情景下碳封存项目的环境影响监测技术方法[J]. 中国地质调查,2021,8(4):92−100.
ZHANG Chenglong,HAO Wenjie,HU Lisha,et al. Environmental impact monitoring technology for carbon storage projects under leakage scenarios[J]. Geological Survey of China,2021,8(4):92−100.
[12] 何学秋,田向辉,宋大钊. 煤层CO2安全封存研究进展与展望[J]. 煤炭科学技术,2022,50(1):212−219.
HE Xueqiu,TIAN Xianghui,SONG Dazhao. Progress and expectation of CO2 sequestration safety in coal seams[J]. Coal Science and Technology,2022,50(1):212−219.
[13] MATTER J M,STUTE M,SNÆBJÖRNSDOTTIR S Ó,et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J]. Science,2016,352(6291):1312−1314.
[14] 邱添,曾令森,申婷婷. 基性–超基性岩碳酸盐化固碳效应研究进展[J]. 中国地质调查,2021,8(4):20−32.
QIU Tian,ZENG Lingsen,SHEN Tingting. Progresses on carbon sequestration through carbonation of mafic–ultramafic rocks[J]. Geological Survey of China,2021,8(4):20−32.
[15] KELEMEN P B,MATTER J,STREIT E E,et al. Rates and mechanisms of mineral carbonation in peridotite:Natural processes and recipes for enhanced,in situ CO2 capture and storage[J]. Annual Review of Earth and Planetary Sciences,2011,39:545−576.
[16] CLARK D E,OELKERS E H,GUNNARSSON I,et al. CarbFix2:CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 ℃[J]. Geochimica et Cosmochimica Acta,2020,279:45–66.
[17] GYSI A P,STEFÁNSSON A. CO2–water–basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts[J]. Geochimica et Cosmochimica Acta,2012,81:129−152.
[18] GYSI A P,STEFÁNSSON A. Mineralogical aspects of CO2 sequestration during hydrothermal basalt alteration:An experimental study at 75 to 250 ℃ and elevated pCO2[J]. Chemical Geology,2012,306/307:146–159.
[19] CAO Xiaomin,LI Qi,XU Liang,et al. A review of in situ carbon mineralization in basalt[J]. Journal of Rock Mechanics and Geotechnical Engineering,2024,16(4):1467−1485.
[20] RAZA A,GLATZ G,GHOLAMI R,et al. Carbon mineralization and geological storage of CO2 in basalt:Mechanisms and technical challenges[J]. Earth–Science Reviews,2022,229:104036.
[21] ABDOLHOSSEINI QOMI M J,MILLER Q R S,ZARE S,et al. Molecular–scale mechanisms of CO2 mineralization in nanoscale interfacial water films[J]. Nature Reviews Chemistry,2022,6(9):598−613.
[22] KIM K,KIM D,NA Y S,et al. A review of carbon mineralization mechanism during geological CO2 storage[J]. Heliyon,2023,9(12):e23135.
[23] MCGRAIL B P,SPANE F A,AMONETTE J E,et al. Injection and monitoring at the Wallula basalt pilot project[J]. Energy Procedia,2014,63:2939−2948.
[24] MATTER J M,BROECKER W S,GISLASON S R,et al. The CarbFix Pilot Project–Storing carbon dioxide in basalt[J]. Energy Procedia,2011,4:5579−5585.
[25] MCGRAIL B P,SCHAEF H T,SPANE F A,et al. Wallula basalt pilot demonstration project:Post–injection results and conclusions[J]. Energy Procedia,2017,114:5783−5790.
[26] MCGRAIL B P,SCHAEF H T,SPANE F A,et al. Field validation of supercritical CO2 reactivity with basalts[J]. Environmental Science & Technology Letters,2017,4(1):6−10.
[27] SNÆBJÖRNSDÓTTIR S Ó,GISLASON S R,GALECZKA I M,et al. Reaction path modelling of in–situ mineralisation of CO2 at the CarbFix site at Hellisheidi,SW–Iceland[J]. Geochimica et Cosmochimica Acta,2018,220:348−366.
[28] OLSSON J,BOVET N,MAKOVICKY E,et al. Olivine reactivity with CO2 and H2O on a microscale:Implications for carbon sequestration[J]. Geochimica et Cosmochimica Acta,2012,77:86−97.
[29] PEUBLE S,GODARD M,LUQUOT L,et al. CO2 geological storage in olivine rich basaltic aquifers:New insights from reactive–percolation experiments[J]. Applied Geochemistry,2015,52:174−190.
[30] OELKERS E H,COLE D R. Carbon dioxide sequestration:aA solution to a global problem[J]. Elements,2008,4(5):305–310.
[31] MATTER J M,KELEMEN P B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation[J]. Nature Geoscience,2009,2(12):837–841.
[32] LU Peng,APPS J,ZHANG Guanru,et al. Knowledge gaps and research needs for modeling CO2 mineralization in the basalt–CO2–water system:A review of laboratory experiments[J]. Earth–Science Reviews,2024,254:104813.
[33] CHAI Kesong,XU Shiai. Synthesis and mechanism of a new environment–friendly flame retardant (anhydrous magnesium carbonate) by hydrothermal method[J]. Advanced Powder Technology,2022,33(11):103776.
[34] JOHNSON N C,THOMAS B,MAHER K,et al. Olivine dissolution and carbonation under conditions relevant for in situ carbon storage[J]. Chemical Geology,2014,373:93−105.
[35] SALDI G D,JORDAN G,SCHOTT J,et al. Magnesite growth rates as a function of temperature and saturation state[J]. Geochimica et Cosmochimica Acta,2009,73(19):5646−5657.
[36] SANTOS H S,NGUYEN H,VENÂNCIO F Q,et al. Mechanisms of Mg carbonates precipitation and implications for CO2 capture and utilization/storage[J]. Inorganic Chemistry Frontiers,2023,10(9):2507−2546.
[37] LIU Deng,XU Yangyang,PAPINEAU D,et al. Experimental evidence for abiotic formation of low–temperature proto–dolomite facilitated by clay minerals[J]. Geochimica et Cosmochimica Acta,2019,247:83−95.
[38] LIPPMANN F. Crystal chemistry of sedimentary carbonate minerals[M]//LIPPMANN F. Sedimentary carbonate minerals. Berlin:Springer,1973:5–96.
[39] DONAHOE R J,LIOU J G. An experimental study on the process of zeolite formation[J]. Geochimica et Cosmochimica Acta,1985,49(11):2349−2360.
[40] ROGERS K L,NEUHOFF P S,PEDERSEN A K,et al. CO2 metasomatism in a basalt–hosted petroleum reservoir,Nuussuaq,West Greenland[J]. Lithos,2006,92(1/2):55−82.
[41] PENG Hong,VAUGHAN J,VOGRIN J. The effect of thermal activation of kaolinite on its dissolution and re–precipitation as zeolites in alkaline aluminate solution[J]. Applied Clay Science,2018,157:189−197.
[42] ALEKSEYEV V A,MEDVEDEVA L S,PRISYAGINA N I,et al. Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium[J]. Geochimica et Cosmochimica Acta,1997,61(6):1125−1142.
[43] MAHER K,STEEFEL C I,WHITE A F,et al. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence,California[J]. Geochimica et Cosmochimica Acta,2009,73(10):2804−2831.
[44] ZHU Chen. In situ feldspar dissolution rates in an aquifer[J]. Geochimica et Cosmochimica Acta,2005,69(6):1435−1453.
[45] CUBILLAS P,KÖHLER S,PRIETO M,et al. How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO3 dissolution:CdCO3 precipitation[J]. Geochimica et Cosmochimica Acta,2005,69(23):5459−5476.
[46] LIU Danqing,AGARWAL R,LIU Fang,et al. Modeling and assessment of CO2 geological storage in the eastern Deccan Basalt of India[J]. Environmental Science and Pollution Research,2022,29(56):85465−85481.
[47] KNAUSS K G,NGUYEN S N,WEED H C. Diopside dissolution kinetics as a function of pH,CO2,temperature,and time[J]. Geochimica et Cosmochimica Acta,1993,57(2):285−294.
[48] GUDBRANDSSON S,WOLFF–BOENISCH D,GISLASON S R,et al. Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22 ℃[J]. Geochimica et Cosmochimica Acta,2014,139:154−172.
[49] PARK A H A,FAN L S. CO2 mineral sequestration:Physically activated dissolution of serpentine and pH swing process[J]. Chemical Engineering Science,2004,59(22/23):5241−5247.
[50] POKROVSKY O S,SCHOTT J. Experimental study of brucite dissolution and precipitation in aqueous solutions:Surface speciation and chemical affinity control[J]. Geochimica et Cosmochimica Acta,2004,68(1):31−45.
[51] CLARK D E,GALECZKA I M,DIDERIKSEN K,et al. Experimental observations of CO2–water–basaltic glass interaction in a large column reactor experiment at 50 ℃[J]. International Journal of Greenhouse Gas Control,2019,89:9−19.
[52] AL–YASERI A,ALI M,ALI M,et al. Western Australia basalt–CO2–brine wettability at geo–storage conditions[J]. Journal of Colloid and Interface Science,2021,603:165−171.
[53] MOHAMMED I,YASERI A,AL SHEHRI D,et al. Basalt mineral surface charge and the effect of mineralization on its colloidal stability:Implications of subsurface CO2 storage[J]. Fuel,2024,356:129569.
[54] GISLASON S R,OELKERS E H. Carbon storage in basalt[J]. Science,2014,344(6182):373−374.
[55] GUDBRANDSSON S,WOLFF–BOENISCH D,GISLASON S R,et al. An experimental study of crystalline basalt dissolution from 2≤pH≤11 and temperatures from 5 to 75 ℃[J]. Geochimica et Cosmochimica Acta,2011,75(19):5496−5509.
[56] GYSI A P,STEFÁNSSON A. Numerical modelling of CO2–water–basalt interaction[J]. Mineralogical Magazine,2008,72(1):55−59.
[57] GYSI A P,STEFÁNSSON A. Experiments and geochemical modeling of CO2 sequestration during hydrothermal basalt alteration[J]. Chemical Geology,2012,306/307:10–28.
[58] GISLASON S R,BROECKER W S,GUNNLAUGSSON E,et al. Rapid solubility and mineral storage of CO2 in basalt[J]. Energy Procedia,2014,63:4561−4574.
[59] GYSI A P,STEFÁNSSON A. CO2–water–basalt interaction. Numerical simulation of low temperature CO2 sequestration into basalts[J]. Geochimica et Cosmochimica Acta,2011,75(17):4728−4751.
[60] STOCKMANN G J,WOLFF–BOENISCH D,GISLASON S R,et al. Do carbonate precipitates affect dissolution kinetics?1:Basaltic glass[J]. Chemical Geology,2011,284(3/4):306−316.
[61] MARIENI C,MATTER J M,TEAGLE D A H. Experimental study on mafic rock dissolution rates within CO2–seawater–rock systems[J]. Geochimica et Cosmochimica Acta,2020,272:259−275.
[62] WOLFF–BOENISCH D,GALECZKA I M. Flow–through reactor experiments on basalt–(sea) water–CO2 reactions at 90 ℃ and neutral pH. What happens to the basalt pore space under post–injection conditions?[J]. International Journal of Greenhouse Gas Control,2018,68:176−190.
[63] SHIBUYA T,YOSHIZAKI M,MASAKI Y,et al. Reactions between basalt and CO2–rich seawater at 250 and 350 ℃,500bars:Implications for the CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2–rich early ocean[J]. Chemical Geology,2013,359:1−9.
[64] WANG Fei,GIAMMAR D E. Forsterite dissolution in saline water at elevated temperature and high CO2 pressure[J]. Environmental Science & Technology,2013,47(1):168−173.
[65] BRANTLEY S L,CHEN Y. Chapter 4. Chemical weathering rates of pyroxenes and amphiboles[M]//WHITE A F,BRANTLEY S L. Chemical weathering rates of silicate minerals. Berlin:De Gruyter Press,1995:119–172.
[66] O’CONNOR W,DAHLIN D,RUSH G,et al. Aqueous mineral carbonation,Final Report DOE/ARC–TR–04–002[J]. 2005.
[67] GADIKOTA G,MATTER J,KELEMEN P,et al. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3[J]. Physical Chemistry Chemical Physics,2014,16(10):4679−4693.
[68] KIKUCHI S,WANG Jiajie,DANDAR O,et al. NaHCO3 as a carrier of CO2 and its enhancement effect on mineralization during hydrothermal alteration of basalt[J]. Frontiers in Environmental Science,2023,11:1138007.
[69] MENEFEE A H,GIAMMAR D E,ELLIS B R. Permanent CO2 trapping through localized and chemical gradient–driven basalt carbonation[J]. Environmental Science & Technology,2018,52(15):8954−8964.
[70] LASAGA A C. Kinetic theory in the Earth sciences[M]. Princeton:Princeton University Press,1998.
[71] HELGESON H C,MURPHY W M,AAGAARD P. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants,effective surface area,and the hydrolysis of feldspar[J]. Geochimica et Cosmochimica Acta,1984,48(12):2405−2432.
[72] RASOOL M H,AHMAD M. Reactivity of basaltic minerals for CO2 sequestration via in situ mineralization:A review[J]. Minerals,2023,13(9):1154.
[73] SCHAEF H T,MCGRAIL B P,OWEN A T. Carbonate mineralization of volcanic province basalts[J]. International Journal of Greenhouse Gas Control,2010,4(2):249−261.
[74] GIAMMAR D E,BRUANT R G JR,PETERS C A. Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide[J]. Chemical Geology,2005,217(3/4):257−276.
[75] ADEOYE J T,MENEFEE A H,XIONG Wei,et al. Effect of transport limitations and fluid properties on reaction products in fractures of unaltered and serpentinized basalt exposed to high PCO2 fluids[J]. International Journal of Greenhouse Gas Control,2017,63:310−320.
[76] ANDREANI M,LUQUOT L,GOUZE P,et al. Experimental study of carbon sequestration reactions controlled by the percolation of CO2–rich brine through peridotites[J]. Environmental Science & Technology,2009,43(4):1226−1231.
[77] GIAMMAR D E,WANG Fei,GUO Bin,et al. Impacts of diffusive transport on carbonate mineral formation from magnesium silicate–CO2–water reactions[J]. Environmental Science & Technology,2014,48(24):14344−14351.
[78] LUHMANN A J,TUTOLO B M,BAGLEY B C,et al. Permeability,porosity,and mineral surface area changes in basalt cores induced by reactive transport of CO2–rich brine[J]. Water Resources Research,2017,53(3):1908−1927.
[79] LIU Danqing,AGARWAL R,LI Yilian,et al. Reactive transport modeling of mineral carbonation in unaltered and altered basalts during CO2 sequestration[J]. International Journal of Greenhouse Gas Control,2019,85:109−120.
[80] LI Li,SALEHIKHOO F,BRANTLEY S L,et al. Spatial zonation limits magnesite dissolution in porous media[J]. Geochimica et Cosmochimica Acta,2014,126:555−573.
[81] MENEFEE A H,LI Peiyuan,GIAMMAR D E,et al. Roles of transport limitations and mineral heterogeneity in carbonation of fractured basalts[J]. Environmental Science & Technology,2017,51(16):9352−9362.
[82] GISLASON S R,WOLFF–BOENISCH D,STEFANSSON A,et al. Mineral sequestration of carbon dioxide in basalt:A pre–injection overview of the CarbFix project[J]. International Journal of Greenhouse Gas Control,2010,4(3):537−545.
[83] SIGFÚSSON B,ARNARSON M Þ,SNÆBJÖRNSDÓTTIR S Ó,et al. Reducing emissions of carbon dioxide and hydrogen sulphide at Hellisheidi power plant in 2014–2017 and the role of CarbFix in achieving the 2040 Iceland climate goals[J]. Energy Procedia,2018,146:135−145.
[84] TRIAS R,MÉNEZ B,LE CAMPION P,et al. High reactivity of deep biota under anthropogenic CO2 injection into basalt[J]. Nature Communications,2017,8:1063.
[85] SNÆBJÖRNSDÓTTIR S Ó,OELKERS E H,MESFIN K,et al. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW–Iceland[J]. International Journal of Greenhouse Gas Control,2017,58:87−102.
[86] CLARK D E,GUNNARSSON I,ARADÓTTIR E S,et al. The chemistry and potential reactivity of the CO2–H2S charged injected waters at the basaltic CarbFix2 site,Iceland[J]. Energy Procedia,2018,146:121−128.
[87] GUNNARSSON I,ARADÓTTIR E S,OELKERS E H,et al. The rapid and cost–effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site[J]. International Journal of Greenhouse Gas Control,2018,79:117−126.
[88] WHITE S K,SPANE F A,SCHAEF H T,et al. Quantification of CO2 mineralization at the Wallula basalt pilot project[J]. Environmental Science & Technology,2020,54(22):14609−14616.
[89] ALFREDSSON H A,OELKERS E H,HARDARSSON B S,et al. The geology and water chemistry of the Hellisheidi,SW–Iceland carbon storage site[J]. International Journal of Greenhouse Gas Control,2013,12:399−418.
[90] HEMMING N G,REEDER R J,HANSON G N. Mineral–fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate[J]. Geochimica et Cosmochimica Acta,1995,59(2):371−379.
[91] KITANO Y,OKUMURA M,IDOGAKI M. Incorporation of sodium,chloride and sulfate with calcium carbonate[J]. Geochemical Journal,1975,9(2):75−84.
[92] SALDI G D,NOIREAUX J,LOUVAT P,et al. Boron isotopic fractionation during adsorption by calcite:Implication for the seawater pH proxy[J]. Geochimica et Cosmochimica Acta,2018,240:255−273.
[93] SCHAEF H T,MCGRAIL B P,OWEN A T. Basalt reactivity variability with reservoir depth in supercritical CO2 and aqueous phases[J]. Energy Procedia,2011,4:4977−4984.
[94] GALECZKA I,WOLFF–BOENISCH D,GISLASON S. Experimental studies of basalt–H2O–CO2 interaction with a high pressure column flow reactor:The mobility of metals[J]. Energy Procedia,2013,37:5823−5833.
[95] SCHAEF H T,MCGRAIL B P,OWEN A T. Basalt–CO2–H2O interactions and variability in carbonate mineralization rates[J]. Energy Procedia,2009,1(1):4899−4906.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons