•  
  •  
 

Coal Geology & Exploration

Abstract

Objective and Methods Driven by the goal of carbon neutrality, geologic CO2 storage has become a critical national priority in China. Compared to conventional reservoirs in sedimentary basins, such as saline aquifers, depleted hydrocarbon reservoirs, and unmineable coal seams, basaltic formations offer more significant advantages in geologic CO2 storage. Specifically, basaltic formations can form stable carbonates through reactions between CO2 and rock minerals while also exhibiting extensive distribution, considerable potential for CO2 storage, and low risk of CO2 leakage. The engineering feasibility of geologic CO2 storage in basaltic formations has been validated by the Iceland CarbFix and U.S. Wallula pilot projects. Buried volcanoes within sedimentary basins host abundant basaltic rocks, show an extensive distribution, and hold considerable potential for CO2 storage, establishing them as potential targets for in situ CO2 mineral trapping. However, there is a lack of systematic assessment of the feasibility, safety, and economic viability of in situ CO2 mineral trapping in buried volcanoes. Therefore, this study analyzed the technical and economic feasibility of this technology based on the distribution, material composition, reservoir physical properties, reservoir-cap rock configuration of buried volcanoes, as well as the storage capacity, environmental risks, and cost-effectiveness related to in situ CO2 mineral trapping.Advances and Prospects The buried volcanoes are globally widespread, holding enormous potential for CO2 storage. They contain ferromagnesian mineral assemblages that enhance mineralization efficiency and hold high-quality reservoirs with abundant storage spaces. Moreover, their internal complex structures constitute natural reservoir-cap rock assemblages. All these characteristics make it theoretically and technically feasible to conduct geologic CO2 storage in buried volcanoes. In terms of safety, the inherent safety of CO2 mineral trapping, combined with multiple containment barriers at the basin scale, ensures minimal CO2 leakage risks. As for economic viability, in addition to the low costs of in situ CO2 mineral trapping itself, infrastructure reuse and synergistic storage in petroliferous basins can further reduce the costs, suggesting significant economic attractiveness. Therefore, buried volcanoes in sedimentary basins represent highly suitable targets for in situ CO2 mineral trapping, outperforming typical basaltic formations in terms of technical feasibility, safety, and economic viability. Nevertheless, this technology still faces some technical limitations. For instance, mechanisms behind CO2-fluid-rock interactions remain poorly understood, and the internal architectures of volcanoes are difficult to characterize. Therefore, future efforts should focus on the multi-field coupling experiments and simulations of CO2-fluid-rock interactions, as well as the fine-scale characterization of buried volcano architectures. Characteristics such as geological conditions reveal that priority zones for CO2 storage in buried volcanoes in China include the Tarim Basin (a land area in West China) and the Pearl River Mouth Basin (a sea area in East China). The results of this study provide reliable targets and geological bases for attaining the carbon neutrality goal.

Keywords

buried volcano, basalt, in situ CO2 mineral trapping, petroliferous basin, geologic CO2 storage

DOI

10.12363/issn.1001-1986.25.07.0568

Reference

[1] LE QUÉRÉ C,MORIARTY R,ANDREW R M,et al. Global carbon budget 2015[J]. Earth System Science Data,2015,7(2):349−396.

[2] IPCC. Climate change 2023:Synthesis report. Contribution of Working Groups I,Ⅱ and Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team,H. Lee and J. Romero (eds. )]. IPCC,Geneva,Switzerland,2023:35–115.

[3] LEONZIO G,SHAH N. Recent advancements and challenges in carbon capture,utilization and storage[J]. Current Opinion in Green and Sustainable Chemistry,2024,46:100895.

[4] JIANG Kai,ASHWORTH P,ZHANG Shiyi,et al. China’s carbon capture,utilization and storage (CCUS) policy:A critical review[J]. Renewable and Sustainable Energy Reviews,2020,119:109601.

[5] 孙枢. CO2地下封存的地质学问题及其对减缓气候变化的意义[J]. 中国基础科学,2006,8(3):17−22

SUN Shu. Geological problems of CO2 underground storage and its significance on mitigating climate change[J]. China Basic Science,2006,8(3):17−22

[6] 张贤,杨晓亮,鲁玺,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京:中国21 世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023.

[7] BACHU S,BONIJOLY D,BRADSHAW J,et al. CO2 storage capacity estimation:Methodology and gaps[J]. International Journal of Greenhouse Gas Control,2007,1(4):430−443.

[8] BRADSHAW J,BACHU S,BONIJOLY D,et al. CO2 storage capacity estimation:Issues and development of standards[J]. International Journal of Greenhouse Gas Control,2007,1(1):62−68.

[9] BASHIR A,ALI M,PATIL S,et al. Comprehensive review of CO2 geological storage:Exploring principles,mechanisms,and prospects[J]. Earth–Science Reviews,2024,249:104672.

[10] ALI M,JHA N K,PAL N,et al. Recent advances in carbon dioxide geological storage,experimental procedures,influencing parameters,and future outlook[J]. Earth–Science Reviews,2022,225:103895.

[11] SNÆBJÖRNSDÓTTIR S Ó,SIGFÚSSON B,MARIENI C,et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment,2020,1(2):90−102.

[12] MATTER J M,STUTE M,SNÆBJÖRNSDOTTIR S Ó,et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J]. Science,2016,352(6291):1312−1314.

[13] GISLASON S R,OELKERS E H. Carbon storage in basalt[J]. Science,2014,344(6182):373−374.

[14] VON STRANDMANN P A E P,BURTON K W,SNÆBJÖRNSDÓTTIR S O,et al. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes[J]. Nature Communications,2019,10:1983.

[15] WHITE S K,SPANE F A,SCHAEF H T,et al. Quantification of CO2 mineralization at the Wallula basalt pilot project[J]. Environmental Science & Technology,2020,54(22):14609−14616.

[16] CLARK D E,OELKERS E H,GUNNARSSON I,et al. CarbFix2:CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 ℃[J]. Geochimica et Cosmochimica Acta,2020,279:45−66.

[17] YIN Yue,ZHANG Liwei,CAO Xiaomin,et al. Progress,challenges,and prospects of CO2 mineral sequestration in basalt:A critical review[J]. Applied Energy,2025,381:125127.

[18] CAO Xiaomin,LI Qi,XU Liang,et al. A review of in situ carbon mineralization in basalt[J]. Journal of Rock Mechanics and Geotechnical Engineering,2024,16(4):1467−1485.

[19] PEREIRA R,GAMBOA D. In situ carbon storage potential in a buried volcano[J]. Geology,2023,51(9):803−807.

[20] RAZA A,GLATZ G,GHOLAMI R,et al. Carbon mineralization and geological storage of CO2 in basalt:Mechanisms and technical challenges[J]. Earth–Science Reviews,2022,229:104036.

[21] MCGRAIL B P,SCHAEF H T,SPANE F A,et al. Wallula basalt pilot demonstration project:Post–injection results and conclusions[J]. Energy Procedia,2017,114:5783−5790.

[22] HOLFORD S,SCHOFIELD N,BUNCH M A,et al. Storing CO2 in buried volcanoes[J]. The APPEA Journal,2021,61(2):626−631.

[23] 周蒂,夏菖佑,李鹏春,等. 玄武岩二氧化碳矿化封存(Ⅱ):广东省雷州半岛的封存条件、选址和挑战[J]. 地球科学,2025,50(2):569−584

ZHOU Di,XIA Changyou,LI Pengchun,et al. CO2 mineralization storage in basalt (Ⅱ):Storage conditions,site selections and challenges on Leizhou Peninsula,Guangdong Province,South China[J]. Earth Science,2025,50(2):569−584

[24] 蔡博峰,李琦,张贤,等. 中国区域二氧化碳地质封存经济可行性研究:中国二氧化碳捕集利用与封存(CCUS)年度报告(2024)[R]. 北京:生态环境部规划院,2024.

[25] 李春峰,赵学婷,段威,等. 中国海域盆地CO2地质封存选址方案与构造力学分析[J]. 力学学报,2023,55(3):719−731

LI Chunfeng,ZHAO Xueting,DUAN Wei,et al. Strategic and geodynamic analyses of geo–sequestration of CO2 in China offshore sedimentary basins[J]. Chinese Journal of Theoretical and Applied Mechanics,2023,55(3):719−731

[26] BAINES S J,WORDEN R H. Geological storage of carbon dioxide[J]. Geological Society,London,Special Publications,2004,233(1):1−6.

[27] 江怀友,沈平平,李相方,等. 世界地质储层二氧化碳理论埋存量评价技术研究[J]. 中外能源,2008,13(2):93−99

JIANG Huaiyou,SHEN Pingping,LI Xiangfang,et al. Study into technologies for estimating theoretical volume of CO2 stored underground worldwide[J]. Sino–Global Energy,2008,13(2):93−99

[28] LIANG Bin,CHEN Chong,JIA Chunsheng,et al. Carbon capture,utilization and storage (CCUS) in oil and gas reservoirs in China:Status,opportunities and challenges[J]. Fuel,2024,375:132353.

[29] ZHANG Xian,LI Kai,WEI Ning,et al. Advances,challenges,and perspectives for CCUS source–sink matching models under carbon neutrality target[J]. Carbon Neutrality,2022,1(1):12.

[30] 廖志伟,羊俊敏,钟翔宇,等. 二氧化碳地质封存技术研究进展综述[J]. 地下空间与工程学报,2024,20(增刊1):497−507

LIAO Zhiwei,YANG Junmin,ZHONG Xiangyu,et al. Review on research progress of carbon dioxide geological sequestration technology[J]. Chinese Journal of Underground Space and Engineering,2024,20(Sup.1):497−507

[31] MCGRAIL B P,SCHAEF H T,HO A M,et al. Potential for carbon dioxide sequestration in flood basalts[J]. Journal of Geophysical Research:Solid Earth,2006,111(B12):B12201.

[32] SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature,1990,345(6275):486.

[33] SANNA A,UIBU M,CARAMANNA G,et al. A review of mineral carbonation technologies to sequester CO2[J]. Chemical Society Reviews,2014,43(23):8049−8080.

[34] OLSSON J,STIPP S L S,MAKOVICKY E,et al. Metal scavenging by calcium carbonate at the Eyjafjallajökull volcano:A carbon capture and storage analogue[J]. Chemical Geology,2014,384:135−148.

[35] KELEMEN P,BENSON S M,PILORGÉ H,et al. An overview of the status and challenges of CO2 storage in minerals and geological formations[J]. Frontiers in Climate,2019,1:9.

[36] LU Song,HU Chenlin,WANG Xiangyan,et al. Carbon dioxide storage in magmatic rocks:Review and perspectives[J]. Renewable and Sustainable Energy Reviews,2024,202:114728.

[37] OELKERS E H,GISLASON S R,MATTER J. Mineral carbonation of CO2[J]. Elements,2008,4(5):333−337.

[38] ZHANG Shuo,DEPAOLO D J. Rates of CO2 mineralization in geological carbon storage[J]. Accounts of Chemical Research,2017,50(9):2075−2084.

[39] WOLFF–BOENISCH D,GALECZKA I M. Flow–through reactor experiments on basalt–(sea)water–CO2 reactions at 90 ℃ and neutral pH. What happens to the basalt pore space under post–injection conditions?[J]. International Journal of Greenhouse Gas Control,2018,68:176−190.

[40] MARIENI C,MATTER J M,TEAGLE D A H. Experimental study on mafic rock dissolution rates within CO2–seawater–rock systems[J]. Geochimica et Cosmochimica Acta,2020,272:259−275.

[41] SCHAEF H T,MCGRAIL B P,OWEN A T. Carbonate mineralization of volcanic province basalts[J]. International Journal of Greenhouse Gas Control,2010,4(2):249−261.

[42] PALANDRI J L,KHARAKA Y K. A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling[R]. U. S. Geological Survey,2004.

[43] OELKERS E H,GISLASON S R. The mechanism,rates and consequences of basaltic glass dissolution:I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al,Si and oxalic acid concentration at 25 ℃ and pH = 3 and 11[J]. Geochimica et Cosmochimica Acta,2001,65(21):3671−3681.

[44] PAN Yanning,LIU Yunhua,HOU Zengqian,et al. Laboratory experiments of carbon mineralization potential of the main terrestrial basalt reservoirs in China[J]. Geoscience Frontiers,2025,16(1):101961.

[45] O’CONNOR W K,DAHLIN D C,RUSH G E,et al. Aqueous mineral carbonation:Mineral availability,pretreatment,reaction parametrics,and process studies[R]. US DOE,2005.

[46] GADIKOTA G,MATTER J,KELEMEN P,et al. Elucidating the differences in the carbon mineralization behaviors of calcium and magnesium bearing alumino–silicates and magnesium silicates for CO2 storage[J]. Fuel,2020,277:117900.

[47] HÄNCHEN M,PRIGIOBBE V,BACIOCCHI R,et al. Precipitation in the Mg–carbonate system:Effects of temperature and CO2 pressure[J]. Chemical Engineering Science,2008,63(4):1012−1028.

[48] GERDEMANN S J,O’CONNOR W K,DAHLIN D C,et al. Ex situ aqueous mineral carbonation[J]. Environmental Science & Technology,2007,41(7):2587−2593.

[49] IGLAUER S,AL–YASERI A. Improving basalt wettability to de–risk CO2 geo–storage in basaltic formations[J]. Advances in Geo–Energy Research,2021,5(3):347−350.

[50] ALI M,ARIF M,SAHITO M F,et al. CO2–wettability of sandstones exposed to traces of organic acids:Implications for CO2 geo–storage[J]. International Journal of Greenhouse Gas Control,2019,83:61−68.

[51] LUHMANN A J,TUTOLO B M,TAN Chunyang,et al. Whole rock basalt alteration from CO2–rich brine during flow–through experiments at 150 ℃ and 150 bar[J]. Chemical Geology,2017,453:92−110.

[52] TALMAN S. Subsurface geochemical fate and effects of impurities contained in a CO2 stream injected into a deep saline aquifer:What is known[J]. International Journal of Greenhouse Gas Control,2015,40:267−291.

[53] GISLASON S R,WOLFF–BOENISCH D,STEFANSSON A,et al. Mineral sequestration of carbon dioxide in basalt:A pre–injection overview of the CarbFix project[J]. International Journal of Greenhouse Gas Control,2010,4(3):537−545.

[54] GÍSLASON S R,SIGURDARDÓTTIR H,ARADÓTTIR E S,et al. A brief history of CarbFix:Challenges and victories of the project’s pilot phase[J]. Energy Procedia,2018,146:103−114.

[55] ARADÓTTIR E S P,SIGURDARDÓTTIR H,SIGFÚSSON B,et al. CarbFix:A CCS pilot project imitating and accelerating natural CO2 sequestration[J]. Greenhouse Gases:Science and Technology,2011,1(2):105−118.

[56] MATTER J M,BROECKER W S,GISLASON S R,et al. The CarbFix pilot project–storing carbon dioxide in basalt[J]. Energy Procedia,2011,4:5579−5585.

[57] GUNNARSSON I,ARADÓTTIR E S,OELKERS E H,et al. The rapid and cost–effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site[J]. International Journal of Greenhouse Gas Control,2018,79:117−126.

[58] MCGRAIL B P,SPANE F A,SULLIVAN E C,et al. The Wallula basalt sequestration pilot project[J]. Energy Procedia,2011,4:5653−5660.

[59] HOLFORD S,SCHOFIELD N,MACDONALD J,et al. Seismic analysis of igneous systems in sedimentary basins and their impacts on hydrocarbon prospectivity:Examples from the southern Australian margin[J]. The APPEA Journal,2012,52(1):229−252.

[60] REYNOLDS P,HOLFORD S,SCHOFIELD N,et al. The shallow depth emplacement of mafic intrusions on a magma–poor rifted margin:An example from the Bight Basin,southern Australia[J]. Marine and Petroleum Geology,2017,88:605−616.

[61] REYNOLDS P,SCHOFIELD N,BROWN R J,et al. The architecture of submarine monogenetic volcanoes–insights from 3D seismic data[J]. Basin Research,2018,30(Sup.1):437−451.

[62] HARDMAN J P A,HOLFORD S P,SCHOFIELD N,et al. The Warnie volcanic province:Jurassic intraplate volcanism in central Australia[J]. Gondwana Research,2019,76:322−347.

[63] HOLFORD S P,SCHOFIELD N,REYNOLDS P. Subsurface fluid flow focused by buried volcanoes in sedimentary basins:Evidence from 3D seismic data,Bass Basin,offshore southeastern Australia[J]. Interpretation,2017,5(3):SK39−SK50.

[64] WATSON D,HOLFORD S,SCHOFIELD N,et al. Failure to predict igneous rocks encountered during exploration of sedimentary basins:A case study of the Bass Basin,southeastern Australia[J]. Marine and Petroleum Geology,2019,99:526−547.

[65] SLOAN M W,MOORE P S,MCCUTCHEON A. Kipper:A unique oil and gas discovery,Gippsland Basin,Australia[J]. The APPEA Journal,1992,32(1):1.

[66] BOREHAM C J,HOPE J M,HARTUNG–KAGI B. Understanding source,distribution and preservation of Australian natural gas:A geochemical perspective[J]. The APPEA Journal,2001,41(1):523−547.

[67] BISCHOFF A,ROSSETTI M,NICOL A,et al. Seismic reflection and petrographic interpretation of a buried monogenetic volcanic field (part 1)[J]. Bulletin of Volcanology,2019,81(9):56.

[68] BISCHOFF A,NICOL A,BARRIER A,et al. Paleogeography and volcanic morphology reconstruction of a buried monogenetic volcanic field (part 2)[J]. Bulletin of Volcanology,2019,81(9):57.

[69] 李鹏春,江静练,程锦辉,等. 广东雷州半岛火山岩二氧化碳矿化封存潜力评估[J]. 高校地质学报,2023,29(1):76−84

LI Pengchun,JIANG Jinglian,CHENG Jinhui,et al. Assessment of carbon dioxide mineralization sequestration potential of volcanic rocks in Leizhou Peninsula,Guangdong Province,China[J]. Geological Journal of China Universities,2023,29(1):76−84

[70] 周蒂,夏菖佑,李鹏春,等. 玄武岩二氧化碳矿化封存(I):技术特点及适用条件[J]. 环境工程学报,2024,18(10):2708−2718

ZHOU Di,XIA Changyou,LI Pengchun,et al. CO2 mineral storage in basalt (I):Technology and application conditions[J]. Chinese Journal of Environmental Engineering,2024,18(10):2708−2718

[71] ZHAO Fang,WU Shiguo,SUN Qiliang,et al. Submarine volcanic mounds in the Pearl River Mouth Basin,northern South China Sea[J]. Marine Geology,2014,355:162−172.

[72] SUN Qiliang,JACKSON C A L,MAGEE C,et al. Extrusion dynamics of deepwater volcanoes revealed by 3–D seismic data[J]. Solid Earth,2019,10(4):1269−1282.

[73] SUN Qiliang,JACKSON C A L,MAGEE C,et al. Deeply buried ancient volcanoes control hydrocarbon migration in the South China Sea[J]. Basin Research,2020,32(1):146−162.

[74] PLANKE S,RASMUSSEN T,REY S S,et al. Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre Basins[M]//DORÉ A G,VINING B A. Petroleum geology:North–West Europe and global perspectives:Proceedings of the 6th Petroleum Geology Conference. London:Geological Society of London,2005,6:833–844.

[75] PLANKE S,MILLETT J M,MAHARJAN D,et al. Igneous seismic geomorphology of buried lava fields and coastal escarpments on the Vøring volcanic rifted margin[J]. Interpretation,2017,5(3):161−177.

[76] SYMONDS P A,PLANKE S,FREY Ø,et al. Volcanic evolution of the western Australian continental margin and its implications for basin development[M]//PURCELL P G,PURCELL R R. The sedimentary basins of western Australia 2. Proceedings of the West Australian Basins Symposium. 2nd ed. Perth:Petroleum Exploration Society of Australia,1998:33–54.

[77] MAGEE C,JACKSON C A L,SCHOFIELD N. The influence of normal fault geometry on igneous sill emplacement and morphology[J]. Geology,2013,41(4):407−410.

[78] MORLEY C K. 3–D seismic imaging of the plumbing system of the Kora Volcano,Taranaki Basin,New Zealand:The influence of syn–rift structure on shallow igneous intrusion architecture[J]. Geosphere,2018,14(6):2533−2584.

[79] SNÆBJÖRNSDÓTTIR S Ó,GISLASON S R. CO2 storage potential of basaltic rocks offshore Iceland[J]. Energy Procedia,2016,86:371−380.

[80] CALLOW B,FALCON–SUAREZ I,AHMED S,et al. Assessing the carbon sequestration potential of basalt using X–ray micro–CT and rock mechanics[J]. International Journal of Greenhouse Gas Control,2018,70:146−156.

[81] 高志豪,夏菖佑,廖松林,等. 玄武岩CO2矿化封存潜力评估方法研究现状及展望[J]. 高校地质学报,2023,29(1):66−75

GAO Zhihao,XIA Changyou,LIAO Songlin,et al. Progress of methods for assessing CO2 mineralization storage potential in basalt[J]. Geological Journal of China Universities,2023,29(1):66−75

[82] 吾尔娜,吴昌志,季峻峰,等. 松辽盆地徐家围子断陷玄武岩气藏储层的CO2封存潜力研究[J]. 高校地质学报,2012,18(2):239−247

UERNA A,WU Changzhi,JI Junfeng,et al. Potential capacity and feasibility of CO2 sequestration in petroleum reservoirs of basaltic rocks:Example from basaltic hydrocarbon reservoir in the Xujiaweizi Fault Depression the Songliao Basin,East China[J]. Geological Journal of China Universities,2012,18(2):239−247

[83] GOLDBERG D S,TAKAHASHI T,SLAGLE A L. Carbon dioxide sequestration in deep–sea basalt[J]. Proceedings of the National Academy of Sciences,2008,105(29):9920−9925.

[84] 刘云乾,廖志伟,丁海,等. 玄武岩矿化封存CO2机理及储层演化特征研究进展[J]. 成都理工大学学报(自然科学版),2024,51(6):975−988

LIU Yunqian,LIAO Zhiwei,DING Hai,et al. Research progress on the CO2 mineralization mechanism and evolution of the physical properties of basalt[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2024,51(6):975−988

[85] 张亮,温荣华,耿松鹤,等. CO2在玄武岩中矿物封存研究进展及关键问题[J]. 高校化学工程学报,2022,36(4):473−480

ZHANG Liang,WEN Ronghua,GENG Songhe,et al. Mineral trapping of CO2 in basalt rock:Progress and key issues[J]. Journal of Chemical Engineering of Chinese Universities,2022,36(4):473−480

[86] TIAN Wei,CAMPBELL I H,ALLEN C M,et al. The Tarim picrite–basalt–rhyolite suite,a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis[J]. Contributions to Mineralogy and Petrology,2010,160(3):407−425.

[87] YU Xing,YANG Shufeng,CHEN Hanlin,et al. Petrogenetic model of the Permian Tarim large igneous province[J]. Science China:Earth Sciences,2017,60(10):1805−1816.

[88] 吾尔娜,陈琦,王世伟,等. 济阳坳陷玄武岩油气藏储层的CO2封存潜力研究[J]. 西部探矿工程,2017,29(12):98−100

[89] OELKERS E H,ARKADAKSKIY S,AFIFI A M,et al. The subsurface carbonation potential of basaltic rocks from the Jizan region of Southwest Saudi Arabia[J]. International Journal of Greenhouse Gas Control,2022,120:103772.

[90] WOLFF–BOENISCH D,GISLASON S R,OELKERS E H. The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates[J]. Geochimica et Cosmochimica Acta,2006,70(4):858−870.

[91] ZOU Caineng,ZHAO Wenzhi,JIA Chengzao,et al. Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China[J]. Petroleum Exploration and Development,2008,35(3):257−271.

[92] 朱如凯,毛治国,郭宏莉,等. 火山岩油气储层地质学:思考与建议[J]. 岩性油气藏,2010,22(2):7−13

ZHU Rukai,MAO Zhiguo,GUO Hongli,et al. Volcanic oil and gas reservoir geology:Thinking and forecast[J]. Lithologic Reservoirs,2010,22(2):7−13

[93] 唐华风,王璞珺,边伟华,等. 火山岩储层地质研究回顾[J]. 石油学报,2020,41(12):1744−1773

TANG Huafeng,WANG Pujun,BIAN Weihua,et al. Review of volcanic reservoir geology[J]. Acta Petrolei Sinica,2020,41(12):1744−1773

[94] 王璞珺,陈树民,刘万洙,等. 松辽盆地火山岩相与火山岩储层的关系[J]. 石油与天然气地质,2003,24(1):18−23

WANG Pujun,CHEN Shumin,LIU Wanzhu,et al. Relationship between volcanic facies and volcanic reservoirs in Songliao Basin[J]. Oil & Gas Geology,2003,24(1):18−23

[95] 鲜本忠,牛花朋,朱筱敏,等. 准噶尔盆地西北缘下二叠统火山岩岩性、岩相及其与储层的关系[J]. 高校地质学报,2013,19(1):46−55

XIAN Benzhong,NIU Huapeng,ZHU Xiaomin,et al. Early Permian volcanic lithology,lithofacies and their relations to reservoir in northwestern margin of the Junggar Basin[J]. Geological Journal of China Universities,2013,19(1):46−55

[96] XIONG Wei,WELLS R K,HORNER J A,et al. CO2 mineral sequestration in naturally porous basalt[J]. Environmental Science & Technology Letters,2018,5(3):142−147.

[97] XIONG Wei,WELLS R K,MENEFEE A H,et al. CO2 mineral trapping in fractured basalt[J]. International Journal of Greenhouse Gas Control,2017,66:204−217.

[98] WATTON T J,WRIGHT K A,JERRAM D A,et al. The petrophysical and petrographical properties of hyaloclastite deposits:Implications for petroleum exploration[J]. AAPG Bulletin,2014,98(3):449−463.

[99] HE Yanxin,LIU Jianping,WANG Lei,et al. Quaternary intrusions from the Zhongjiannan Basin,South China Sea:Their relationship with the Hainan mantle plume and influence on hydrocarbon reservoirs[J]. Acta Geologica Sinica (English Edition),2023,97(1):376−392.

[100] 徐长贵,杨海风,王清斌,等. 火山岩油气藏勘探进展[J]. 地球科学,2025,50(2):363−376

XU Changgui,YANG Haifeng,WANG Qingbin,et al. Progress in exploration of volcanic oil and gas reservoirs[J]. Earth Science,2025,50(2):363−376

[101] 何衍鑫,鲜本忠,牛花朋,等. 古地理环境对火山喷发样式的影响:以准噶尔盆地玛湖凹陷东部下二叠统风城组为例[J]. 古地理学报,2018,20(2):245−262

HE Yanxin,XIAN Benzhong,NIU Huapeng,et al. Effects of palaeogeographic environment on volcano eruption style:Example from the Lower Permian Fengcheng Formation in eastern Mahu Sag,Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition),2018,20(2):245−262

[102] 侯连华,朱如凯,赵霞,等. 中国火山岩油气藏控制因素及分布规律[J]. 中国工程科学,2012,14(6):77−86

HOU Lianhua,ZHU Rukai,ZHAO Xia,et al. The control factors and distribution laws of volcanic oil and gas reservoir in China[J]. Strategic Study of CAE,2012,14(6):77−86

[103] Tang Huafeng,Tian Zhiwen,Gao Youfeng et al. Review of volcanic reservoir geology in China[J]. Earth-Science Reviews,2022,232:104158.

[104] 任嘉豪,何衍鑫,田伟,等. 松辽盆地徐家围子断陷深部含氦气藏特征与成藏过程[J]. 煤田地质与勘探,2025,53(9):25−40

REN Jiahao,HE Yanxin,TIAN Wei,et al. Characteristics and formation processes of helium–bearing gas reservoirs in deep strata in the Xujiaweizi Fault Depression,Songliao Basin[J]. Coal Geology & Exploration,2025,53(9):25−40

[105] 付广,陈章明,吕延防,等. 泥质岩盖层封盖性能综合评价方法探讨[J]. 石油实验地质,1998,20(1):80−86

FU Guang,CHEN Zhangming,LYU Yanfang,et al. Comprehensive evaluation of sealing ability of mudstone caprock[J]. Experimental Petroleum Geology,1998,20(1):80−86

[106] 张朝鲲,田伟,何衍鑫,等. 1.32 Ga基性岩床侵位的环境效应探究[J]. 北京大学学报(自然科学版),2024,60(6):1067–1078.

ZHANG Chaokun,TIAN Wei,HE Yanxin,et al. Environmental effects on the emplacement of 1.32 Ga mafic sills[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2024,60(6):1067–1078.

[107] 佘晓宇,施泽进,刘高波,等. 巴楚–麦盖提地区油气动态成藏的运移通道[J]. 成都理工大学学报(自然科学版),2004,31(3):291−296

SHE Xiaoyu,SHI Zejin,LIU Gaobo,et al. Migration pathway of hydrocarbon dynamic accumulation in Bachu–Markit area,Xinjiang,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2004,31(3):291−296

[108] GOLDIE DIVKO L,O’BRIEN G,HARRISON M,et al. Evaluation of the regional top seal in the Gippsland Basin:Implications for geological carbon storage and hydrocarbon prospectivity[J]. The APPEA Journal,2010,50(1):463−486.

[109] NOUROLLAH H,UROSEVIC M. Evaluation of sealing potential near gas chimneys–the Gippsland Basin,Australia[J]. Journal of Applied Geophysics,2019,160:254−263.

[110] DING Weiwei,SUN Zhen,MOHN G,et al. Lateral evolution of the rift–to–drift transition in the South China Sea:Evidence from multi–channel seismic data and IODP Expeditions 367 & 368 drilling results[J]. Earth and Planetary Science Letters,2020,531:115932.

[111] SUN Zhen,LIN Jian,QIU Ning,et al. The role of magmatism in the thinning and breakup of the South China Sea continental margin:Special Topic:The South China Sea Ocean Drilling[J]. National Science Review,2019,6(5):871−876.

[112] LI Chunfeng,LI Jiabiao,DING Weiwei,et al. Seismic stratigraphy of the central South China Sea Basin and implications for neotectonics[J]. Journal of Geophysical Research:Solid Earth,2015,120(3):1377−1399.

[113] LI Gang,MEI Lianfu,PANG Xiong,et al. Magmatism within the northern margin of the South China Sea during the post–rift stage:An overview,and new insights into the geodynamics[J]. Earth–Science Reviews,2022,225:103917.

[114] 王维,杨香华,叶加仁,等. 恩平凹陷珠江组盖层的沉积学评价思路与方法[J]. 石油实验地质,2014,36(2):249−256

WANG Wei,YANG Xianghua,YE Jiaren,et al. Ideas and methods of sedimentologic evaluation on caprocks in Zhujiang Formation,Enping Sag[J]. Petroleum Geology & Experiment,2014,36(2):249−256

[115] 史集建,吕延防,付广,等. 松辽盆地徐家围子断陷火山岩盖层封气能力综合定量评价[J]. 石油学报,2011,32(3):424−431

SHI Jijian,LYU Yanfang,FU Guang,et al. Synthetically and quantitatively assessing gas–sealing ability of volcanic cap rocks in the Xujiaweizi Sag of the Songliao Basin[J]. Acta Petrolei Sinica,2011,32(3):424−431

[116] SONG Youngsoo,JUN Sungjun,NA Yoonsu,et al. Geomechanical challenges during geological CO2 storage:A review[J]. Chemical Engineering Journal,2023,456:140968.

[117] SUN Zihan,ELSWORTH D,CUI Guanglei,et al. Impacts of rate of change in effective stress and inertial effects on fault slip behavior:New insights into injection–induced earthquakes[J]. Journal of Geophysical Research:Solid Earth,2024,129(2):e2023JB027126.

[118] WEINGARTEN M,GE S,GODT J W,et al. High–rate injection is associated with the increase in U.S. mid–continent seismicity[J]. Science,2015,348(6241):1336−1340.

[119] ARADÓTTIR E S P,HJÁLMARSSON E. CarbFix:Public engagement and transparency[J]. Energy Procedia,2018,146:115−120.

[120] BICKLE M J. Geological carbon storage[J]. Nature Geoscience,2009,2(12):815−818.

[121] SNÆBJÖRNSDÓTTIR S Ó,WIESE F,FRIDRIKSSON T,et al. CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges[J]. Energy Procedia,2014,63:4585−4600.

[122] The kinetics of mineral carbonation[M]//Geological sequestration of carbon dioxide:Thermodynamics kinetics and reaction path modeling. Amsterdam:Elsevier Science,2007.

[123] WHITE J A,FOXALL W. Assessing induced seismicity risk at CO2 storage projects:Recent progress and remaining challenges[J]. International Journal of Greenhouse Gas Control,2016,49:413−424.

[124] JUNCU D,ÁRNADÓTTIR T,GEIRSSON H,et al. Injection–induced surface deformation and seismicity at the Hellisheidi geothermal field,Iceland[J]. Journal of Volcanology and Geothermal Research,2020,391:106337.

[125] ZOBACK M D,GORELICK S M. Earthquake triggering and large–scale geologic storage of carbon dioxide[J]. Proceedings of the National Academy of Sciences,2012,109(26):10164−10168.

[126] KIM W Y. Induced seismicity associated with fluid injection into a deep well in Youngstown,Ohio[J]. Journal of Geophysical Research:Solid Earth,2013,118(7):3506−3518.

[127] DEICHMANN N,GIARDINI D. Earthquakes induced by the stimulation of an enhanced geothermal system below basel (Switzerland)[J]. Seismological Research Letters,2009,80(5):784−798.

[128] CHENG Yuxiang,LIU Wenna,XU Tianfu,et al. Seismicity induced by geological CO2 storage:A review[J]. Earth–Science Reviews,2023,239:104369.

[129] WEI Xiaochen,LI Qi,LI Xiaying,et al. Traffic light detection method for underground CO2 injection–induced seismicity[J]. International Journal of Geomechanics,2020,20(2):04019162.

[130] VERDON J P. Significance for secure CO2 storage of earthquakes induced by fluid injection[J]. Environmental Research Letters,2014,9(6):064022.

[131] VILARRASA V,RAMIREZ J C. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak[J]. Proceedings of the National Academy of Sciences,2015,112(19):5938−5943.

[132] SOHI S P. Carbon storage with benefits[J]. Science,2012,338(6110):1034−1035.

[133] RATOUIS T M P,SNÆBJÖRNSDÓTTIR S Ó,VOIGT M J,et al. CarbFix 2:A transport model of long–term CO2 and H2S injection into basaltic rocks at Hellisheidi,SW–Iceland[J]. International Journal of Greenhouse Gas Control,2022,114:103586.

[134] CAO Xiaomin,LI Qi,XU Liang,et al. Experiments of CO2–basalt–fluid interactions and micromechanical alterations:Implications for carbon mineralization[J]. Energy & Fuels,2024,38(7):6205−6214.

[135] HELLEVANG H,AAGAARD P,OELKERS E H,et al. Can dawsonite permanently trap CO2?[J]. Environmental Science & Technology,2005,39(21):8281−8287.

[136] PEUBLE S,ANDREANI M,GODARD M,et al. Carbonate mineralization in percolated olivine aggregates:Linking effects of crystallographic orientation and fluid flow[J]. American Mineralogist,2015,100(2/3):474−482.

[137] WANG Jiajie,YAGI M,TAMAGAWA T,et al. Reactivity and dissolution characteristics of naturally altered basalt in CO2–rich brine:Implications for CO2 mineralization[J]. ACS Omega,2024,9(4):4429−4438.

[138] FERREIRA A,SANTOS R V,DE ALMEIDA T S,et al. Unraveling the rapid CO2 mineralization experiment using the Paraná flood basalts of South America[J]. Scientific Reports,2024,14:8116.

[139] PHUKAN M,JYOTI A,BLACK J R,et al. Changes in pore geometry and connectivity in the basalt pore network adjacent to fractures in response to CO2–saturated fluid[J]. Water Resources Research,2021,57(12):e2021WR030275.

[140] ABDOLHOSSEINI QOMI M J,MILLER Q R S,ZARE S,et al. Molecular–scale mechanisms of CO2 mineralization in nanoscale interfacial water films[J]. Nature Reviews Chemistry,2022,6(9):598−613.

[141] HARRISON A L,DIPPLE G M,POWER I M,et al. Influence of surface passivation and water content on mineral reactions in unsaturated porous media:Implications for brucite carbonation and CO2 sequestration[J]. Geochimica et Cosmochimica Acta,2015,148:477−495.

[142] SALEH M A,RYAN M P,TRUSLER J P M,et al. The interfacial processes controlling carbon dioxide mineralisation in magnesium and calcium silicates[J]. Fuel,2025,380:132969.

[143] KANAKIYA S,ADAM L,ESTEBAN L,et al. Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid[J]. Journal of Geophysical Research:Solid Earth,2017,122(6):4312−4327.

[144] WU Hao,JAYNE R S,BODNAR R J,et al. Simulation of CO2 mineral trapping and permeability alteration in fractured basalt:Implications for geologic carbon sequestration in mafic reservoirs[J]. International Journal of Greenhouse Gas Control,2021,109:103383.

[145] LIU Danqing,AGARWAL R,LI Yilian,et al. Reactive transport modeling of mineral carbonation in unaltered and altered basalts during CO2 sequestration[J]. International Journal of Greenhouse Gas Control,2019,85:109−120.

[146] ZENG Hongliu,LOUCKS R G,REED R M. Three–dimensional seismic architecture of an Upper Cretaceous volcanic complex and associated carbonate systems;Taylor Group,Elaine field,South Texas,USA[J]. Marine and Petroleum Geology,2023,155:106350.

[147] 王璞珺,迟元林,刘万洙,等. 松辽盆地火山岩相:类型、特征和储层意义[J]. 吉林大学学报(地球科学版),2003,33(4):449−456

WANG Pujun,CHI Yuanlin,LIU Wanzhu,et al. Volcanic facies of the Songliao Basin:Classification,characteristics and reservoir significance[J]. Journal of Jilin University (Earth Science Edition),2003,33(4):449−456

[148] GALLAND O. Experimental modelling of ground deformation associated with shallow magma intrusions[J]. Earth and Planetary Science Letters,2012,317/318:145–156.

[149] SUN Qiliang,MAGEE C,JACKSON C A L,et al. How do deep–water volcanoes grow?[J]. Earth and Planetary Science Letters,2020,542:116320.

[150] 黄玉龙,王璞珺,冯志强,等. 松辽盆地改造残留的古火山机构与现代火山机构的类比分析[J]. 吉林大学学报(地球科学版),2007,37(1):65−72

HUANG Yulong,WANG Pujun,FENG Zhiqiang,et al. Analogy of volcanic edifices between modern volcanoes and ancient remnant volcanoes in Songliao Basin[J]. Journal of Jilin University (Earth Science Edition),2007,37(1):65−72

[151]

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.