Coal Geology & Exploration
Abstract
Background The urgent need to respond to global climate change and to achieve carbon neutrality is driving geologic CO2 sequestration technology to be increasingly large-scale, safe, and intelligent. Since the CO2 sequestration process involves multi-physical field coupling, the engineering feasibility and long-term safety of CO2 sequestration heavily rely on the capacity of numerical models to perform accurate characterization of complex subsurface processes. Therefore, establishing a model system, covering the entire process consisting of injection, migration, sequestration, and monitoring, that is suitable for various geobodies for CO2 sequestration has emerged as a foundation for the engineering application of geologic CO2 sequestration technology. Advances This study systematically expatiates on six types of core models for geologic CO2 sequestration: multiphase flow, vertical integration, reactive transport, deep learning, CO2 plume, and geomechanical models. Based on the practical validation through representative CO2 sequestration projects across the world, this study develops a universal modeling methodology centered on the synergy between reservoir characteristics, algorithm selection, and monitoring requirements. Studies have revealed that in the injection phase, key parameters can be effectively optimized using Fourier algorithms coupled with the multiphase flow model; in the migration phase, the spatial distribution of CO2 can be accurately traced using the plume model coupled with finite element and finite volume methods; in the monitoring phase, cap rock integrity and the fault reactivation risk can be systematically assessed using the geomechanical model, thereby enabling the full-chain dynamic safety characterization. Prospects Given complex geological conditions and the demand for long-term safe sequestration, future efforts should focus on intelligent modeling driven by both big data and artificial intelligence. It is advisable to establish a new generation of models that are capable of autonomous learning, real-time data assimilation, and dynamic optimization by deeply integrating geological mechanisms and multi-source monitoring data. The purpose is to significantly enhance prediction accuracy and scenario adaptability. This model system will further extend to a fully closed-loop system covering capture, transport, sequestration, utilization, and emission, thereby supporting the establishment and intelligent adjustment of the integrated scheme of the CO2 sequestration-utilization cycle. Furthermore, this system will promote the transition of CO2 sequestration from single-link simulation to whole-chain collaborative management. Overall, the results of this study provide a systematic methodology for the cross-scenario application of geologic CO2 sequestration models and offer a pathway for the evolution of the model system toward prolonged effects and intelligence.
Keywords
carbon neutrality, geologic CO2 sequestration, carbon sequestration model, model system, intelligent modeling, integrated CO2 sequestration and utilization
DOI
10.12363/issn.1001-1986.25.10.0765
Recommended Citation
HU Chenlin, DONG Cheng, SANG Shuxun,
et al.
(2026)
"Research advances and prospects of geologic CO2 sequestration models,"
Coal Geology & Exploration: Vol. 54:
Iss.
1, Article 16.
DOI: 10.12363/issn.1001-1986.25.10.0765
Available at:
https://cge.researchcommons.org/journal/vol54/iss1/16
Reference
[1] 邹才能,张辰君,程军,等. 碳中和目标下CO2捕集利用与封存技术进展、挑战与展望[J]. 石油勘探与开发,2025,52(6):1472−1487
ZOU Caineng,ZHANG Chenjun,CHENG Jun,et al. Advances,challenges,and prospects of carbon dioxide capture,utilization,and storage technologies for carbon neutrality[J]. Petroleum Exploration and Development,2025,52(6):1472−1487
[2] SHAH M S,KHAN F,ZENDEHBOUDI S,et al. An integrated model to investigate optimized CO2 utilization and risk mitigation in offshore hydrocarbon reservoirs[J]. Geoenergy Science and Engineering,2024,234:212589.
[3] TRUCCO D J,PRESSER D J,CAFARO D C,et al. A mathematical programming model for the optimal utilization of deep saline aquifers for CO2 storage[J]. Computers & Chemical Engineering,2025,203:109343.
[4] EROL S,AKIN T,BAŞER A,et al. Fluid–CO2 injection impact in a geothermal reservoir:Evaluation with 3–D reactive transport modeling[J]. Geothermics,2022,98:102271.
[5] 周磊,邵佳慧,徐英杰,等. 基于YOLOv9的黄瓜病害检测轻量化算法研究[J/OL]. 计算机技术与发展,2025:1–7 (2025-10-14) [2025-09-25]. https://doi.org/10.20165/j.cnki.ISSN1673–629X.2025.0268.
ZHOU Lei,SHAO Jiahui,XU Yingjie,et al. Research on lightweight algorithm for cucumber disease detection based on YOLOv9[J/OL]. Computer Technology and Development,2025:1–7 (2025-10-14) [2025-09-25]. https://doi.org/10.20165/j.cnki.ISSN1673–629X.2025.0268.
[6] GONZALEZ K,MISRA S. Unsupervised learning monitors the carbon–dioxide plume in the subsurface carbon storage reservoir[J]. Expert Systems with Applications,2022,201:117216.
[7] KHAN S,KHULIEF Y,JUANES R,et al. Geomechanical modeling of CO2 sequestration:A review focused on CO2 injection and monitoring[J]. Journal of Environmental Chemical Engineering,2024,12(3):112847.
[8] 张志超,柏明星,高硕,等. CO2地质封存系统泄漏风险评价[J]. 油气地质与采收率,2023,30(2):135−143
ZHANG Zhichao,BAI Mingxing,GAO Shuo,et al. Leakage risk assessment of geological CO2 storage system[J]. Petroleum Geology and Recovery Efficiency,2023,30(2):135−143
[9] 陈旭升,胡冉,杨志兵,等. CO2注入诱发盐沉淀对渗透率的影响机制:可视化试验和场地模拟[J]. 岩石力学与工程学报,2025,44(11):2959−2974
CHEN Xusheng,HU Ran,YANG Zhibing,et al. Effects of CO2 injection–induced salt precipitation on permeability:Visualization experiments and field simulations[J]. Chinese Journal of Rock Mechanics and Engineering,2025,44(11):2959−2974
[10] BANDILLA K W,GUO Bo,CELIA M A. A guideline for appropriate application of vertically–integrated modeling approaches for geologic carbon storage modeling[J]. International Journal of Greenhouse Gas Control,2019,91:102808.
[11] LI Yingyan,HE Jixiang,HU Chenlin,et al. Cyclic CO2 injection process recovery behavior in classified deep formations[J]. ACS Omega,2025,10(44):52895−52902.
[12] TAO Yiheng,GUO Bo,BANDILLA K W,et al. Vertically integrated dual–continuum models for CO2 injection in fractured geological formations[J]. Computational Geosciences,2019,23(2):273−284.
[13] 李林涛,康晓东,李彦尊,等. 挪威Sleipner二氧化碳封存项目经验与启示[J]. 中国海上油气,2025,37(5):235−243
LI Lintao,KANG Xiaodong,LI Yanzun,et al. Analysis and lessons learned from Sleipner CCS project in Norway[J]. China Offshore Oil and Gas,2025,37(5):235−243
[14] 樊阳杰,付美龙,刘漪雯,等. CO2羽流地热系统与水基增强型地热系统换热效果对比实验[J]. 特种油气藏,2025,32(2):117−122
FAN Yangjie,FU Meilong,LIU Yiwen,et al. Comparison experiment of heat transfer effect between CO2–plume geothermal system and water–based enhanced geothermal system[J]. Special Oil & Gas Reservoirs,2025,32(2):117−122
[15] XU Sheng,DONG Fei,YIN Bifeng. Advances in coupled multiphase flow and heat transfer in nanoporous media:Current status,challenges,and frontier directions[J]. Renewable and Sustainable Energy Reviews,2026,226:116462.
[16] QI Ning,LIU Jianfeng,LI Xuesong,et al. Research on shale acid fracturing reservoir simulation technology:A critical review[J]. Geoenergy Science and Engineering,2026,257:214157.
[17] 肖张波,赵鹏,李洪博,等. 珠江口盆地陆丰南文昌组低渗油气成藏特征及油气富集规律[J/OL]. 天然气地球科学,2025:1–21 (2025-11-14) [2025-09-23]. https://link.cnki.net/urlid/62.1177.te.20250922.1434.004.
XIAO Zhangbo,ZHAO Peng,LI Hongbo,et al. Characteristics of low permeability reservoirs in Wenchang Formation in the southern part of Lufeng Depression,Pearl River Mouth Basin and conditions of oil and gas enrichment[J/OL]. Natural Gas Geoscience,2025:1–21 (2025-11-14) [2025-09-23]. https://link.cnki.net/urlid/62.1177.te.20250922.1434.004.
[18] 曹玲,王艳梅,张嵩. 二氯亚砜超快三体解离动力学研究[J]. 华中科技大学学报(自然科学版),2025,53(9):59−64
CAO Ling,WANG Yanmei,ZHANG Song. Study of ultrafast three–body photodissociation of sulfurous dichloride with UV excitation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2025,53(9):59−64
[19] 邓文龙,刘莉萍,代平,等. 低渗–致密砂岩储层饱含束缚水状态下渗透率降低效应及修正[J]. 石油实验地质,2025,47(5):1198−1211
DENG Wenlong,LIU Liping,DAI Ping,et al. Permeability reduction effect and correction for low–permeability tight sandstone reservoirs under bound water saturation[J]. Petroleum Geology & Experiment,2025,47(5):1198−1211
[20] SOLOVSKÝ J,FIROOZABADI A. Dynamic adaptive and fully unstructured tetrahedral gridding:Application to CO2 sequestration with consideration of full fluid compressibility[J]. Journal of Computational Physics,2025,521:113556.
[21] 邓晨光,孙小龙,刘可禹,等. 储层孔隙结构对CO2地质封存井周围盐沉淀作用的影响机制[J]. 煤田地质与勘探,2025,53(10):128−140
DENG Chenguang,SUN Xiaolong,LIU Keyu,et al. Mechanisms underlying the impacts of reservoir pore structures on near–well salt precipitation in CO2 geological storage[J]. Coal Geology & Exploration,2025,53(10):128−140
[22] 刁新东,李文平,姜冬,等. 塔河油田巴楚组砂砾岩段致密储层成岩作用与孔隙演化[J]. 石油实验地质,2025,47(5):1035−1048
DIAO Xindong,LI Wenping,JIANG Dong,et al. Diagenesis and pore evolution of tight reservoirs in glutenite section of Bachu Formation,Tahe Oilfield[J]. Petroleum Geology and Experiment,2025,47(5):1035−1048
[23] WANG Yufei,FERNÀNDEZ–GARCIA D,SAALTINK M W. Modeling reactive multi–component multi–phase flow for Geological Carbon Sequestration (GCS) with Matlab[J]. Computers & Geosciences,2023,172:105300.
[24] ZHANG Keni,MORIDIS G,PRUESS K. TOUGH+CO2:A multiphase fluid–flow simulator for CO2 geologic sequestration in saline aquifers[J]. Computers & Geosciences,2011,37(6):714−723.
[25] 王兵军,郑恺昕,李晓恒,等. 微细粒矿物浮选流体动力学数理模型研究进展[J]. 有色金属(选矿部分),2025(9):37−54
WANG Bingjun,ZHENG Kaixin,LI Xiaoheng,et al. Advances in hydrodynamic mathematical models for fine minerals flotation hydrodynamic[J]. Nonferrous Metals (Mineral Processing Section),2025(9):37−54
[26] KAMPMAN N,BERTIER P,BUSCH A,et al. Validating reactive transport models of CO2–brine–rock reactions in caprocks using observations from a natural CO2 reservoir[J]. Energy Procedia,2017,114:4902−4916.
[27] DAI Zhenxue,XU Lulu,XIAO Ting,et al. Reactive chemical transport simulations of geologic carbon sequestration:Methods and applications[J]. Earth–Science Reviews,2020,208:103265.
[28] 魏菊艳,付美龙,黎旭东,等. 热补偿作用与生产井数对CO2羽流地热系统采热性能的影响[J]. 科学技术与工程,2025,25(13):5429−5437
WEI Juyan,FU Meilong,LI Xudong,et al. Numerical simulation of thermal compensation effect and number of production wells on heat recovery performance of CO2 plume geothermal system[J]. Science Technology and Engineering,2025,25(13):5429−5437
[29] ADDASSI M,OMAR A,GHORAYEB K,et al. Comparison of various reactive transport simulators for geological carbon sequestration[J]. International Journal of Greenhouse Gas Control,2021,110:103419.
[30] CHAULAGAIN N,DABBAGHI E,NG K. Review of hydrogen–brine–rock interaction and its impact on petrophysical and geomechanical properties,and storage mechanisms of underground hydrogen storage reservoirs[J]. International Journal of Hydrogen Energy,2025,169:151099.
[31] ZAREEI D,ROSTAMI B,KOSTARELOS K. Petrophysical changes of carbonate rock related to CO2 injection and sequestration[J]. International Journal of Greenhouse Gas Control,2022,117:103648.
[32] 张子英,田文广,庞雄奇,等. 鄂尔多斯盆地中东部地区上古生界油气动力场临界条件[J/OL]. 天然气地球科学,2025:1–21 (2025-11-14) [2025-09-22]. https://link.cnki.net/urlid/62.1177.TE.20250919.1542.004.
ZHANG Ziying,TIAN Wenguang,PANG Xiongqi,et al. The critical conditions of Upper–Paleozoic hydrocarbon dynamic field in the central and eastern Ordos Basin[J/OL]. Natural Gas Geoscience,2025:1–21 (2025-11-14) [2025-09-22]. https://link.cnki.net/urlid/62.1177.TE.20250919.1542.004.
[33] AZIN R,MEHRABI N,OSFOURI S,et al. Experimental study of CO2–saline aquifer–carbonate rock interaction during CO2 sequestration[J]. Procedia Earth and Planetary Science,2015,15:413−420.
[34] TARIQ Z,YILDIRIM E U,GUDALA M,et al. Spatial–temporal prediction of minerals dissolution and precipitation using deep learning techniques:An implication to Geological Carbon Sequestration[J]. Fuel,2023,341:127677.
[35] LIU Yuyang,MA Xinhua,ZHANG Xiaowei,et al. A deep–learning–based prediction method of the estimated ultimate recovery (EUR) of shale gas wells[J]. Petroleum Science,2021,18(5):1450−1464.
[36] 陈星月,印森林,孙敬,等. 鄂西北见天坝生物礁露头三维建模与气藏数值模拟:以传统露头数据集和无人机倾斜摄影模型为例[J]. 沉积与特提斯地质,2025,45(2):282−293
CHEN Xingyue,YIN Senlin,SUN Jing,et al. Three–dimensional modeling and gas reservoir numerical simulation of the Jiantianba reef outcrop in northwestern Hubei:A case study using traditional outcrop data set and the UAV oblique photography model[J]. Sedimentary Geology and Tethyan Geology,2025,45(2):282−293
[37] MAHMOOD T,SABA T,REHMAN A,et al. Enhancing Industrial Internet of Things performance through deep transfer learning–based neural network digital twin modeling in data–scarce environments[J]. Journal of Industrial Information Integration,2025,48:100956.
[38] YAO Peiyi,YU Ziwang,ZHANG Yanjun,et al. Application of machine learning in carbon capture and storage:An in–depth insight from the perspective of geoscience[J]. Fuel,2023,333:126296.
[39] KIM Y,JANG H,KIM J,et al. Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network[J]. Applied Energy,2017,185:916−928.
[40] ZHAO Mengjie,WANG Yuhang,GERRITSMA M,et al. Efficient simulation of CO2 migration dynamics in deep saline aquifers using a multi–task deep learning technique with consistency[J]. Advances in Water Resources,2023,178:104494.
[41] HE Xupeng,ZHU Weiwei,KWAK H,et al. Deep learning–assisted Bayesian framework for real–time CO2 leakage locating at geologic sequestration sites[J]. Journal of Cleaner Production,2024,448:141484.
[42] 赵旭生,王山海. 人工神经网络在煤与瓦斯突出强度预测中的应用[J]. 煤田地质与勘探,2002,30(2):23−25
ZHAO Xusheng,WANG Shanhai. Application of artificial neural network to forecast of intensity of coal and gas outburst in mine[J]. Coal Geology & Exploration,2002,30(2):23−25
[43] 韦秀娟,刘兴业,周怀来. 卷积Mamba模型驱动的地震随机噪声压制方法[J]. 煤田地质与勘探,2025,53(5):196−206
WEI Xiujuan,LIU Xingye,ZHOU Huailai. A seismic random noise suppression method based on CNN–Mamba[J]. Coal Geology & Exploration,2025,53(5):196−206
[44] 尹海洋,陈同俊,宋雄,等. 基于地震属性优化和机器学习的煤层厚度预测方法[J]. 煤田地质与勘探,2023,51(5):164−170
YIN Haiyang,CHEN Tongjun,SONG Xiong,et al. Methods for predicting the thickness of coal seams based on seismic attribute optimization and machine learning[J]. Coal Geology & Exploration,2023,51(5):164−170
[45] WEN Gege,TANG Meng,BENSON S M. Towards a predictor for CO2 plume migration using deep neural networks[J]. International Journal of Greenhouse Gas Control,2021,105:103223.
[46] 张睿,刘文宇,徐辉,等. 气泡羽流流动特性研究综述[J]. 水利水电科技进展,2025,45(6):9−18
ZHANG Rui,LIU Wenyu,XU Hui,et al. Review of flow characteristics of bubble plumes[J]. Advances in Science and Technology of Water Resources,2025,45(6):9−18
[47] 马先林,刘朕之,湛杰,等. 基于物理信息神经网络的CO2羽流分布预测方法[J]. 石油钻探技术,2024,52(5):69−75
MA Xianlin,LIU Zhenzhi,ZHAN Jie,et al. Prediction method of CO2 plume distribution based on physics–informed neural networks[J]. Petroleum Drilling Techniques,2024,52(5):69−75
[48] 路言秋,李伟忠,李伟,等. 胜利油田强水敏性稠油储层高温变化特征分析:以王庄油田和金家油田为例[J]. 石油地质与工程,2024,38(6):79−84
LU Yanqiu,LI Weizhong,LI Wei,et al. Analysis of high temperature variation characteristics of heavy oil reservoirs with strong water sensitivity in Shengli Oilfield[J]. Petroleum Geology and Engineering,2024,38(6):79−84
[49] 曹东升,曾联波,黄诚,等. 多尺度岩石力学层对断层和裂缝发育的控制作用[J]. 地球科学,2023,48(7):2535−2556
CAO Dongsheng,ZENG Lianbo,HUANG Cheng,et al. Control of multi–scale mechanical stratigraphy on development of faults and fractures[J]. Earth Science,2023,48(7):2535−2556
[50] LI Guang. Numerical investigation of CO2 storage in hydrocarbon field using a geomechanical–fluid coupling model[J]. Petroleum,2016,2(3):252−257.
[51] TANG Meng,JU Xin,DURLOFSKY L J. Deep–learning–based coupled flow–geomechanics surrogate model for CO2 sequestration[J]. International Journal of Greenhouse Gas Control,2022,118:103692.
[52] 谢健,刘佳旭,陈逸杰. CO2注入多断裂切穿型含水层的地质力学响应[J]. 地震学报,2025,47(5):649−676
XIE Jian,LIU Jiaxu,CHEN Yijie. Geomechanical responses of CO2 injection into an aquifer penetrated by multiple faults[J]. Acta Seismologica Sinica,2025,47(5):649−676
[53] 武胜男,张来斌,邓金根,等. FMCS模型在油田盖层破坏概率预测中的应用[J]. 中国安全科学学报,2015,25(9):109−114
WU Shengnan,ZHANG Laibin,DENG Jingen,et al. Application of FMCS model to oilfield cap damage probability prediction[J]. China Safety Science Journal,2015,25(9):109−114
[54] GOODARZI S,SETTARI A,KEITH D. Geomechanical modeling for CO2 storage in Nisku aquifer in Wabamun Lake area in Canada[J]. International Journal of Greenhouse Gas Control,2012,10:113−122.
[55] 杜松,李祥,车巧慧,等. 煤矿矿井水深部地质封存技术体系与工程应用[J/OL]. 煤炭学报,2025:1–18 (2025-11-14) [2025-09-18]. https://doi.org/10.13225/j.cnki.jccs.2025.0974.
DU Song,LI Xiang,CHE Qiaohui,et al. Technical system and engineering application of geological deep well injection and storage of coal mine water[J/OL]. Journal of China Coal Society,2025:1–18 (2025-11-14) [2025-09-18]. https://doi.org/10.13225/j.cnki.jccs.2025.0974.
[56] 吕文玉,吕超,张文忠,等. 木里地区煤系天然气水合物储层中CO2封存试验研究[J]. 煤田地质与勘探,2023,51(6):40−49
LYU Wenyu,LYU Chao,ZHANG Wenzhong,et al. Experimental study on CO2 storage in coal measure gas hydrates reservoirs in Muli Coalfield[J]. Coal Geology & Exploration,2023,51(6):40−49
[57] DUGUID A,GUO Boyun,NYGAARD R,et al. Monitoring well integrity at the Cranfield field phase III CO2 storage project[J]. International Journal of Greenhouse Gas Control,2021,109:103341.
[58] 郭育婷,王浩璠,李琳,等. 二氧化碳捕集与封存技术碳减排量核算方法研究[J]. 环境工程,2025,43(12):222−236
GUO Yuting,WANG Haofan,LI Lin,et al. A carbon emission reduction calculation method for carbon dioxide capture and storage technology[J]. Environmental Engineering,2025,43(12):222−236
[59] VASCO D W,ALFI M,HOSSEINI S A,et al. The seismic response to injected carbon dioxide:Comparing observations to estimates based upon fluid flow modeling[J]. Journal of Geophysical Research:Solid Earth,2019,124(7):6880−6907.
[60] 朱恒,闫浩,王凌匀,等. 油气田甲烷卫星遥感监测应用探讨[J]. 油气田环境保护,2025,35(4):47−50
ZHU Heng,YAN Hao,WANG Lingyun,et al. Exploration of satellite remote sensing monitoring application for methane in oil and gas fields[J]. Environmental Protection of Oil & Gas Fields,2025,35(4):47−50
[61] IBRAHIM A,RAJI W O. Adaptive utilization of Castagna and Biot–Gassmann equations in fluid replacement mechanism (FRM),with elastic logs analysis and petrophysical cross–plots for fluid discrimination in an offshore basin,Niger Delta,Nigeria[J]. Journal of African Earth Sciences,2025,230:105712.
[62] GUO Yuhang,PAN Baozhi,ZHANG Lihua,et al. A fluid discrimination method based on Gassmann–Brie–Patchy Equation full waveform simulations and time–frequency analysis[J]. Energy,2023,275:127306.
[63] HOSSEINI S A,ALFI M,NICOT J P,et al. Analysis of CO2 storage mechanisms at a CO2–EOR site,Cranfield,Mississippi[J]. Greenhouse Gases:Science and Technology,2018,8(3):469−482.
[64] XIE Yan,ZHENG Tao,ZHU Yujie,et al. H2 promotes the premature replacement of CH4–CO2 hydrate even when the CH4 gas–phase pressure exceeds the phase equilibrium pressure of CH4 hydrate[J]. Renewable and Sustainable Energy Reviews,2024,200:114582.
[65] MOHANTY M M,PAL B K. Sorption behavior of coal for implication in coal bed methane an overview[J]. International Journal of Mining Science and Technology,2017,27(2):307−314.
[66] FAN Chaojun,YANG Lei,SUN Hao,et al. Recent advances and perspectives of CO2–enhanced coalbed methane:Experimental,modeling,and technological development[J]. Energy & Fuels,2023,37(5):3371−3412.
[67] 李文平,曹丹平,乔伟,等. 深部碳储空间探测与地质评价关键技术[J]. 煤炭学报,2025,50(5):2333−2354
LI Wenping,CAO Danping,QIAO Wei,et al. Key technologies for exploration and geological evaluation of deep carbon storage spaces[J]. Journal of China Coal Society,2025,50(5):2333−2354
[68] 刘卫彬,单衍胜,彭勃,等. 油气藏CO2封存和提高采收率双效适宜性评价:以渤海湾盆地典型油区为例[J]. 中国矿业,2025,34(9):133−140
LIU Weibin,SHAN Yansheng,PENG Bo,et al. Evaluation of the dual–effect suitability of CO2 storage and enhanced oil recovery in oil and gas reservoirs:A case study of typical oilfields in the Bohai Bay Basin[J]. China Mining Magazine,2025,34(9):133−140
[69] WANG Wendong,XIE Qiuheng,AN Senyou,et al. Pore–scale simulation of multiphase flow and reactive transport processes involved in geologic carbon sequestration[J]. Earth–Science Reviews,2023,247:104602.
[70] 肖阳,马中慧,刘书云,等. 珠江口盆地潜山储层地质力学及压裂参数优化研究[J]. 科学技术与工程,2024,24(4):1392−1401
XIAO Yang,MA Zhonghui,LIU Shuyun,et al. Geomechanics and fracturing parameter optimization of buried hill reservoir in Pearl River Mouth Basin[J]. Science Technology and Engineering,2024,24(4):1392−1401
[71] YU Xinran,AHMADINIA M,SHARIATIPOUR S M,et al. Impact of reservoir permeability,permeability anisotropy and designed injection rate on CO2 gas behavior in the shallow saline aquifer at the CaMI field research station,Brooks,Alberta[J]. Natural Resources Research,2020,29(4):2735−2752.
[72] LU Song,HU Chenlin,WANG Xiangyan,et al. Carbon dioxide storage in clastic rocks:Review and perspectives[J]. Renewable and Sustainable Energy Reviews,2025,213:115487.
[73] LU Song,HU Chenlin,WANG Xiangyan,et al. Carbon dioxide storage in magmatic rocks:Review and perspectives[J]. Renewable and Sustainable Energy Reviews,2024,202:114728.
[74] 刘斌,史春生. 基于动态规划的碳封存注入井位置优化[J]. 工程科学学报,2025,47(6):1377−1386
LIU Bin,SHI Chunsheng. Injection well site optimization of carbon geological sequestration based on dynamic programming[J]. Chinese Journal of Engineering,2025,47(6):1377−1386
[75] SHAO Qi,BOON M,YOUSSEF A,et al. Modelling CO2 plume spreading in highly heterogeneous rocks with anisotropic,rate–dependent saturation functions:A field–data based numeric simulation study of Otway[J]. International Journal of Greenhouse Gas Control,2022,119:103699.
[76] 张立群,徐维江,张松,等. 人工冻结工程中浆脉–冻土界面力学特性研究[J]. 辽宁工程技术大学学报(自然科学版),2025,44(6):720−727
ZHANG Liqun,XU Weijiang,ZHANG Song,et al. Study on the mechanical properties of the interface between slurry vein and frozen soil in artificial ground freezing[J]. Journal of Liaoning Technical University (Natural Science),2025,44(6):720−727
[77] 胡晨林,桑树勋,李鑫,等. 玄武岩封存CO2的独特性及其前景[J]. 煤田地质与勘探,2025,53(12):100−115
HU Chenlin,SANG Shuxun,LI Xin,et al. Uniqueness and prospects of CO2 sequestration in basalts[J]. Coal Geology & Exploration,2025,53(12):100−115
[78] 胡晨林,边静,唐勇,等. 中国富油煤形成机制与地质产出研究进展及趋势[J]. 石油学报,2025,46(10):1985−2000
HU Chenlin,BIAN Jing,TANG Yong,et al. Research progress and trends on the formation mechanism and geological output of tar–rich coal in China[J]. Acta Petrolei Sinica,2025,46(10):1985−2000
[79] BIAN Jing,HU Chenlin,LI Xin,et al. Occurrence of tar–rich coal:Review and perspectives[J]. Australian Journal of Earth Sciences,2025,72(4):544−563.
[80] SHI Qingmin,CUI Shidong,WANG Shuangming,et al. Experiment study on CO2 adsorption performance of thermal treated coal:Inspiration for CO2 storage after underground coal thermal treatment[J]. Energy,2022,254:124392.
[81] 王挺,汪杰,江厚顺,等. 页岩水平井水力压裂裂缝扩展及防窜三维地质模拟[J]. 新疆石油地质,2023,44(6):720−728
WANG Ting,WANG Jie,JIANG Houshun,et al. 3D geological simulation of hydraulic fracture propagation and frac–hit prevention in horizontal shale gas wells[J]. Xinjiang Petroleum Geology,2023,44(6):720−728
[82] YADALI J B. 改进的蒸汽吞吐渗流–地质力学耦合模型[J]. 石油勘探与开发,2023,50(5):1049−1055
YADALI J B. An improved coupled flow–geomechanical model for cyclic steam stimulation[J]. Petroleum Exploration and Development,2023,50(5):1049−1055
[83] KUSHWAHA O S,UTHAYAKUMAR H,KUMARESAN K. Modeling of carbon dioxide fixation by microalgae using hybrid artificial intelligence (AI) and fuzzy logic (FL) methods and optimization by genetic algorithm (GA)[J]. Environmental Science and Pollution Research,2023,30(10):24927−24948.
[84] 魏子俊,高科. 深部咸水层CO2封存的热–水–力模型研究[J]. 地质科技通报,2025,44(4):129−141
WEI Zijun,GAO Ke. CO2 sequestration in deep saline aquifers with integrated thermo–hydro–mechanical model[J]. Bulletin of Geological Science and Technology,2025,44(4):129−141
[85] PARK J H,PARK J,LEE J W,et al. Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application[J]. Renewable and Sustainable Energy Reviews,2023,187:113783.
[86] LI Guanglei,LUO Tengqi,LIU Ran,et al. Integration of carbon dioxide removal (CDR) technology and artificial intelligence (AI) in energy system optimization[J]. Processes,2024,12(2):402.
[87] 顾雷雨,李文辉,黄为,等. CO2地质封存协同上覆煤矿开采环境风险评估[J]. 煤田地质与勘探,2025,53(12):36−48
GU Leiyu,LI Wenhui,HUANG Wei,et al. Environmental risk assessment of CO2 storage combined with the overlying coal mining[J]. Coal Geology & Exploration,2025,53(12):36−48
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons