•  
  •  
 

Coal Geology & Exploration

Authors

XU Shen, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Xuzhou 221116, China; Key Laboratory of Coalbed Methane Resources & Reservoir Formation Process, Ministry of Education, Xuzhou 221008, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, ChinaFollow
WANG Meng, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Xuzhou 221116, China; Key Laboratory of Coalbed Methane Resources & Reservoir Formation Process, Ministry of Education, Xuzhou 221008, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, ChinaFollow
DAI Xuguang, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Xuzhou 221116, China; Key Laboratory of Coalbed Methane Resources & Reservoir Formation Process, Ministry of Education, Xuzhou 221008, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
QIU Yuxin, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Xuzhou 221116, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
TUO Jialong, Key Laboratory of Coalbed Methane Resources & Reservoir Formation Process, Ministry of Education, Xuzhou 221008, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
LI Wenhao, Key Laboratory of Coalbed Methane Resources & Reservoir Formation Process, Ministry of Education, Xuzhou 221008, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
GAO Jie, Key Laboratory of Coalbed Methane Resources & Reservoir Formation Process, Ministry of Education, Xuzhou 221008, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Objective Coal production and utilization lead to substantial carbon emissions, and the carbon emissions from underground coal mines have attracted increasing attention. However, research on emission reduction pathways in coal mines remains nascent. Methods The Y Coal Mine was investigated in this study. Using methods including life cycle assessment (LCA), emission factor approach, and monitoring, this study identified the boundaries for carbon emission accounting and determined the sources, total amount, and characteristics of carbon emissions from the coal mine. Furthermore, a framework of carbon emission reduction through CCUS was established based on the principle of carbon capture, utilization, and storage (CCUS) technique and the technical means used in the critical links of the technique, as well as the specific carbon emission characteristics and geological conditions.Results and Conclusions The accounting boundaries cover the entire process from underground mining to coal washing and processing and then to coal transportation. Sources of carbon emissions can be categorized into direct and indirect types. Direct carbon emissions primarily comprise methane (CH4) and carbon dioxide (CO2) escaping from coal mining and post-mining operations, as well as greenhouse gases generated from fossil fuel combustion. Indirect emissions principally involve purchased electricity and consumed water resources. The carbon emission accounting results indicate that the annual carbon emissions from the Y Coal Mine totaled 7.43×105 t carbon dioxide equivalent (CO2e) in 2024. Among these, gas escape led to the highest carbon emissions of 6.74×105 t CO2e, accounting for approximately 90.8% of the total. In contrast, fuel combustion produced the lowest emissions, totaling 728.56 t CO2e and representing a proportion of 0.2%. Indirect emissions accounted for approximately 9% of the total, primarily originating from the use of electricity (6.65×104 t CO2e) and water resources (1.24×103 t CO2e). The Y Coal Mine shows a carbon emissions structure dominated by gas escape. Therefore, carbon emission reduction should focus on gas drainage and utilization, along with the control of gas escape. The results of this study provide a quantitative method for developing a carbon emission accounting system for underground coal mines. This method, combined with the proposed pathways for emission reduction through CCUS, offers theoretical support and a practical reference for the green, low-carbon transition of the coal mining industry.

Keywords

underground coal mine, life cycle assessment(LCA), carbon emission accounting, CCUS, emission reduction pathway

DOI

10.12363/issn.1001-1986.25.07.0553

Reference

[1] 王猛,马如英,单雅迪,等. 准东煤田构造特征及控煤作用研究[J]. 煤田地质与勘探,2023,51(2):95−103

WANG Meng,MA Ruying,SHAN Yadi,et al. Characteristics and coal–controlling effects of structures in the Zhundong coalfield[J]. Coal Geology & Exploration,2023,51(2):95−103

[2] 国家统计局. 中华人民共和国2024年国民经济和社会发展统计公报[J]. 高校图书馆工作,2025,45(2):95

[3] 朱磊,古文哲,宋天奇,等. 煤基固废矿化封存CO2技术研究进展[J]. 煤炭科学技术,2024,52(2):309−328

ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress of CO2 storage technology by mineralization of coal–based solid waste[J]. Coal Science and Technology,2024,52(2):309−328

[4] 袁亮. 煤炭工业碳中和发展战略构想[J]. 中国工程科学,2023,25(5):103−110

YUAN Liang. Strategic conception of carbon neutralization in coal industry[J]. Strategic Study of CAE,2023,25(5):103−110

[5] 王猛,马如英,代旭光,等. 煤矿区碳排放的确认和低碳绿色发展途径研究[J]. 煤田地质与勘探,2021,49(5):63−69

WANG Meng,MA Ruying,DAI Xuguang,et al. Confirmation of carbon emissions in coal mining areas and research on low–carbon green development path[J]. Coal Geology & Exploration,2021,49(5):63−69

[6] 刘志强,宋朝阳,纪洪广,等. 深部矿产资源开采矿井建设模式及其关键技术[J]. 煤炭学报,2021,46(3):826−845

LIU Zhiqiang,SONG Zhaoyang,JI Hongguang,et al. Construction mode and key technology of mining shaft engineering for deep mineral resources[J]. Journal of China Coal Society,2021,46(3):826−845

[7] 郭雪伟,曲昌盛,徐东耀. 双碳背景下碳排放核算体系现状与展望[J]. 环境工程技术学报,2025,15(3):819−832

GUO Xuewei,QU Changsheng,XU Dongyao. Current status and prospects of carbon emission accounting system under the “dual carbon” background[J]. Journal of Environmental Engineering Technology,2025,15(3):819−832

[8] IPCC. IPCC 2006 guidelines for national greenhouse gas inventories[M]. Institute for Global Environmental Strategies,2006.

[9] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 工业企业温室气体排放核算和报告通则:GB/T 32150—2015[S]. 北京:中国标准出版社,2015.

[10] 国家市场监督管理总局,国家标准化管理委员会. 碳排放核算与报告要求 第16部分:石油天然气生产企业:GB/T 32151. 16—2023[S]. 北京:中国标准出版社,2023.

[11] 国家市场监督管理总局,中国国家标准化管理委员会. 温室气体排放核算与报告要求 第11部分:煤炭生产企业:GB/T 32151. 11—2018[S]. 北京:中国标准出版社,2018.

[12] 国家市场监督管理总局,中国国家标准化管理委员会. 温室气体产品碳足迹量化要求和指南:GB/T 24067—2024[S]. 北京:中国标准出版社,2024.

[13] 李姗姗,袁亮. 煤炭工业全生命周期碳排放核算与影响因素[J]. 煤炭学报,2023,48(7):2925−2935

LI Shanshan,YUAN Liang. Carbon emission accounting and influencing factors for whole life cycle of coal industry[J]. Journal of China Coal Society,2023,48(7):2925−2935

[14] 王俊博,李鑫,田继军,等. 煤炭开发利用产业碳足迹计算方法及减排措施综述[J]. 煤炭学报,2023,48(增刊1):263−274

WANG Junbo,LI Xin,TIAN Jijun,et al. Summary of carbon footprint calculation methods and emission reduction measures for coal exploitation and utilization[J]. Journal of China Coal Society,2023,48(Sup.1):263−274

[15] 刘含笑,单思珂,魏书洲,等. 基于生命周期法的煤电碳足迹评估[J]. 中国电力,2024,57(7):227−237

LIU Hanxiao,SHAN Sike,WEI Shuzhou,et al. Life–cycle carbon footprint assessment of coal–fired power generation[J]. Electric Power,2024,57(7):227−237

[16] 王金满,杨曼,刘彪,等. 绿色矿山建设碳源/汇与减排增汇研究进展[J]. 煤炭学报,2024,49(3):1597−1610

WANG Jinman,YANG Man,LIU Biao,et al. Carbon sources/sinks and emission reduction and sink enhancement in green mining[J]. Journal of China Coal Society,2024,49(3):1597−1610

[17] 桑树勋,滕卫卫,刘世奇,等. 火力电厂大规模全流程CCUS技术研究进展与前瞻[J]. 天然气工业,2024,44(12):187−198

SANG Shuxun,TENG Weiwei,LIU Shiqi,et al. Research progress and prospects of large–scale full process CCUS technology in power plants[J]. Natural Gas Industry,2024,44(12):187−198

[18] 刘世奇,莫航,桑树勋,等. 宁夏回族自治区碳捕集、利用与封存源汇匹配与集群部署[J]. 煤炭学报,2024,49(3):1583−1596

LIU Shiqi,MO Hang,SANG Shuxun,et al. Source–sink matching and cluster deployment of carbon capture,utilization,and storage in Ningxia Hui Autonomous Region[J]. Journal of China Coal Society,2024,49(3):1583−1596

[19] 张松航,张守仁,唐书恒,等. 无烟煤中甲烷和二氧化碳混合气吸附运移规律[J]. 煤炭学报,2021,46(2):544−555

ZHANG Songhang,ZHANG Shouren,TANG Shuheng,et al. Adsorption and transport of methane and carbon dioxide mixture in anthracite[J]. Journal of China Coal Society,2021,46(2):544−555

[20] 沈平平,江怀友,陈永武,等. CO2注入技术提高采收率研究[J]. 特种油气藏,2007,14(3):1−4

SHEN Pingping,JIANG Huaiyou,CHEN Yongwu,et al. EOR study of CO2 injection[J]. Special Oil & Gas Reservoirs,2007,14(3):1−4

[21] 许江,蒋石宇,彭守建,等. 不同初始储层压力下CO2驱替CH4试验研究[J]. 煤田地质与勘探,2025,53(4):94−105

XU Jiang,JIANG Shiyu,PENG Shoujian,et al. An experimental study of CH4 displacement by CO2 under varying initial reservoir pressures[J]. Coal Geology & Exploration,2025,53(4):94−105

[22] 朱梦博,刘浪,王双明,等. 煤矿采空区间隔条带充填CO2矿化封存及其关键技术[J]. 煤田地质与勘探,2025,53(6):143−155

ZHU Mengbo,LIU Lang,WANG Shuangming,et al. Backfill–strip mining and CO2 mineralization sequestration in coal mine goaves:A synergetic method and its key technologies[J]. Coal Geology & Exploration,2025,53(6):143−155

[23] 刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15

LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low–carbon technology path under the dual–carbon background[J]. Journal of China Coal Society,2022,47(1):1−15

[24] LIU Jing,ZHAO Jun,WEI Haiqiao,et al. Comparative environmental assessment of methanol production technologies:A cradle–to–gate life cycle analysis[J]. Energy Conversion and Management,2024,302:118128.

[25] 刘明奇,张小平,王瑜,等. 典型露天煤矿全生命周期碳排放核算及其区域环境影响[J]. 煤炭学报,2025,50(6):3072−3084

LIU Mingqi,ZHANG Xiaoping,WANG Yu,et al. Full lifecycle carbon emissions accounting and regional environmental impact assessment of typical open–pit coal mines[J]. Journal of China Coal Society,2025,50(6):3072−3084

[26] 王萍萍,赵永椿,张军营,等. 双碳目标下燃煤电厂碳计量方法研究进展[J]. 洁净煤技术,2022,28(10):170−183

WANG Pingping,ZHAO Yongchun,ZHANG Junying,et al. Research progress on carbon measurement methods of coal–fired power plants under the background of carbon neutrality[J]. Clean Coal Technology,2022,28(10):170−183

[27] 马翠梅,戴尔阜,刘乙辰,等. 中国煤炭开采和矿后活动甲烷逃逸排放研究[J]. 资源科学,2020,42(2):311−322

MA Cuimei,DAI Erfu,LIU Yichen,et al. Methane fugitive emissions from coal mining and post–mining activities in China[J]. Resources Science,2020,42(2):311−322

[28] 国家市场监督管理总局,国家标准化管理委员会. 用能单位能源计量器具配备和管理通则:GB 17167—2006[S]. 北京:中国标准出版社,2006.

[29] 国家发展和改革委员会应对气候变化司. 中国2008年温室气体清单研究[M]. 北京:中国计划出版社,2014.

[30] 生态环境部,国家统计局. 关于发布2022年电力二氧化碳排放因子的公告[Z/OL](2024-12-26).

[31] 孙丽,周铭,虞斌. 煤制甲醇过程的碳排放核算及减排对策研究[J]. 化工环保,2023,43(4):519−525

SUN Li,ZHOU Ming,YU Bin. Research on carbon emission accounting and emission reduction measures for coal to methanol processes[J]. Environmental Protection of Chemical Industry,2023,43(4):519−525

[32] 桑树勋,刘世奇,陆诗建,等. 工程化CCUS全流程技术及其进展[J]. 油气藏评价与开发,2022,12(5):711−725

SANG Shuxun,LIU Shiqi,LU Shijian,et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development,2022,12(5):711−725

[33] 卞正富,伍小杰,周跃进,等. 煤炭零碳开采技术[J]. 煤炭学报,2023,48(7):2613−2625

BIAN Zhengfu,WU Xiaojie,ZHOU Yuejin,et al. Coal mining technology with net zero carbon emission[J]. Journal of China Coal Society,2023,48(7):2613−2625

[34] 李阳,赵清民,薛兆杰. “双碳”目标下二氧化碳捕集、利用与封存技术及产业化发展路径[J]. 石油钻采工艺,2023,45(6):655−660

LI Yang,ZHAO Qingmin,XUE Zhaojie. Carbon dioxide capture,utilization and storage technology and industrialization development path under the dual carbon goal[J]. Oil Drilling & Production Technology,2023,45(6):655−660

[35] DAVOODI S,AL–SHARGABI M,WOOD D A,et al. Review of technological progress in carbon dioxide capture,storage,and utilization[J]. Gas Science and Engineering,2023,117:205070.

[36] 李国富,李超,霍春秀,等. 山西重点煤矿区瓦斯梯级利用关键技术与工程示范[J]. 煤田地质与勘探,2022,50(9):42−50

LI Guofu,LI Chao,HUO Chunxiu,et al. Key technology and engineering demonstration for cascade utilization of gas in key coal mining areas of Shanxi Province,China[J]. Coal Geology & Exploration,2022,50(9):42−50

[37] 陆诗建,张娟娟,刘玲,等. 工业源二氧化碳捕集技术进展与发展趋势[J]. 现代化工,2022,42(11):59−64

LU Shijian,ZHANG Juanjuan,LIU Ling,et al. Progress and development trend of industry–sourced carbon dioxide capture technology[J]. Modern Chemical Industry,2022,42(11):59−64

[38] 盛依依. 二氧化碳捕集技术研究及工业化进展[J]. 现代化工,2025,45(3):56−60

SHENG Yiyi. Progress in research and industrialization of carbon dioxide capture technology[J]. Modern Chemical Industry,2025,45(3):56−60

[39] 刘世奇,皇凡生,杜瑞斌,等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探,2023,51(2):158−174

LIU Shiqi,HUANG Fansheng,DU Ruibin,et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J]. Coal Geology & Exploration,2023,51(2):158−174

[40] 马馨蕊,梁杰,李清,等. 咸水层CO2地质封存研究进展及前景展望[J]. 海洋地质前沿,2024,40(10):1−18

MA Xinrui,LIANG Jie,LI Qing,et al. Progress and prospects of CO2 geological storage in saline aquifer[J]. Marine Geology Frontiers,2024,40(10):1−18

[41] 周银邦,王锐,何应付,等. 咸水层CO2地质封存典型案例分析及对比[J]. 油气地质与采收率,2023,30(2):162−167

ZHOU Yinbang,WANG Rui,HE Yingfu,et al. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J]. Petroleum Geology and Recovery Efficiency,2023,30(2):162−167

[42] 方杰,雷宏武,时俊杰,等. CO2地质封存与利用技术发展态势与展望[J]. 热力发电,2025,54(6):157−167

FANG Jie,LEI Hongwu,SHI Junjie,et al. Research on carbon dioxide geological storage and utilization:Progress and prospects[J]. Thermal Power Generation,2025,54(6):157−167

[43] 韩思杰. 深部无烟煤储层CO2–ECBM的CO2封存机制与存储潜力评价方法[D]. 徐州:中国矿业大学,2020.

HAN Sijie. CO2 containment mechanism in deep anthracite related to CO2–ECBM and assessment methodology for CO2 storage capacity[D]. Xuzhou:China University of Mining and Technology,2020.

[44] 王双明,申艳军,孙强,等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报,2022,47(1):45−60

WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Underground CO2 storage and technical problems in coal mining area under the “dual carbon” target[J]. Journal of China Coal Society,2022,47(1):45−60

[45] 桑树勋,袁亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451

SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451

[46] 桑树勋,刘世奇,郑司建,等. 全流程煤基CCUS研究进展与前瞻[J/OL]. 煤田地质与勘探,2025:1–22 [2025-09-25]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=MDKT20250924001&dbname=CJFD&dbcode=CJFQ.

SANG Shuxun,LIU Shiqi,ZHENG Sijian,et al. Research progress and prospects of the full flowsheet technology of coal–based CCUS[J/OL]. Coal Geology & Exploration,2025:1–22 [2025-09-25]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=MDKT20250924001&dbname=CJFD&dbcode=CJFQ.

[47] WANG Meng,DAI Xuguang,SANG Shuxun,et al. CO2 mineralization projects,techniques,mechanisms,potential and future outlook in basalt:A review[J]. Renewable and Sustainable Energy Reviews,2025,221:115920.

[48] DANANJAYAN R R T,KANDASAMY P,ANDIMUTHU R. Direct mineral carbonation of coal fly ash for CO2 sequestration[J]. Journal of Cleaner Production,2016,112:4173−4182.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.