•  
  •  
 

Coal Geology & Exploration

Authors

XU Zhusong, Research Institute of Science and Technology, CNPC, Beijing 100083, China; Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China; Key Laboratory of Gas Reservoir Formation and Development, CNPC, Langfang 065007, ChinaFollow
LI Jian, Research Institute of Science and Technology, CNPC, Beijing 100083, China; Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China; Key Laboratory of Gas Reservoir Formation and Development, CNPC, Langfang 065007, ChinaFollow
WANG Xiaobo, Research Institute of Science and Technology, CNPC, Beijing 100083, China; Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China; Key Laboratory of Gas Reservoir Formation and Development, CNPC, Langfang 065007, ChinaFollow
CUI Huiying, Research Institute of Science and Technology, CNPC, Beijing 100083, China; Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China; Key Laboratory of Gas Reservoir Formation and Development, CNPC, Langfang 065007, China
XIA Yutian, Research Institute of Science and Technology, CNPC, Beijing 100083, China; Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China; Key Laboratory of Gas Reservoir Formation and Development, CNPC, Langfang 065007, China
TIAN Jixian, Research Institute of Science and Technology, CNPC, Beijing 100083, China; Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China; Key Laboratory of Gas Reservoir Formation and Development, CNPC, Langfang 065007, China
LI Wanting, Research Institute of Science and Technology, CNPC, Beijing 100083, China; Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China; Key Laboratory of Gas Reservoir Formation and Development, CNPC, Langfang 065007, China
CHEN Dawei, Research Institute of Science and Technology, CNPC, Beijing 100083, China; Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China; Key Laboratory of Gas Reservoir Formation and Development, CNPC, Langfang 065007, China

Abstract

Background In recent years, promising helium-rich natural gas shows have been discovered in the Dongping gas field. However, the helium resources in the gas field exhibit lateral heterogeneity and vertical differential accumulation in multiple sequences, which restrict the further exploration of these resources. Methods By analyzing the lateral and vertical distribution characteristics of helium in the Dongping gas field, this study explored its origin and sources, analyzed the differences in geological backgrounds between helium-rich and helium-deficient gas reservoirs, and systematically summarized the differential enrichment pattern across different blocks within the Dongping gas field.Results and Conclusions In the Dongping gas field, helium-rich gas reservoirs are predominantly distributed in the shallowly buried Dongping-3 well block, where there is a significant positive correlation between helium and nitrogen concentrations. In contrast, the Dongping-1 and Dongping-17 well blocks exhibit gas reservoirs with a low helium concentration. Helium in the Dongping gas field is typically of the crustal origin, derived primarily from ancient basement rocks including granites and granitic gneiss. The differential helium enrichment is jointly controlled by multiple factors, including source rock availability, groundwater dynamics, natural gas charging intensity, and tectonic framework. The Dongping-3 well block is characterized by U- and Th-rich ancient granites, active groundwater circulation, relatively weak natural gas charging, and traps located in structurally high parts, and the basement exhibits the highest helium generation intensity of 1.02×10–12 cm3/(a·g). In this well block, small traps located in the structurally high parts were formed by the large-amplitude tectonic uplift during the Himalayan period. These traps are conducive to the upward migration of ancient formation water containing He and N2 at depth while also determining the small intensity of natural gas charging. Conversely, the Dongping-1 well block, despite its higher helium reserves, features weak groundwater hydrodynamics, intense natural gas charging, and traps in structurally low parts, which restrict helium migration and enrichment. The Dongping-17 well block shows the lowest helium concentration due to helium source rocks comprising schists, slates, and limestones with low U and Th concentrations and deeply buried traps. Based on research on differential helium enrichment in gas reservoirs with different basal lithologies and tectonic morphologies in the Dongping gas field, it is predicted that the structurally high parts in the piedmont paleo-uplift and paleo-slope area of the Altun Mountain are potentially play fairways for helium enrichment. This prediction is expected to provide guidance for the subsequent helium exploration and development work in the Qaidam Basin.

Keywords

Dongping gas field, helium, differential enrichment, helium source rock, charging intensity, tectonic uplift

DOI

10.12363/issn.1001-1986.25.05.0312

Reference

[1] SIDDHANTAKAR A,SANTILLÁN–SALDIVAR J,KIPPES T,et al. Helium resource global supply and demand:Geopolitical supply risk analysis[J]. Resources,Conservation and Recycling,2023,193:106935.

[2] DANABALAN D,GLUYAS J G,MACPHERSON C G,et al. The principles of helium exploration[J]. Petroleum Geoscience,2022,28(2):petgeo2021−029.

[3] PROVORNAYA I V,FILIMONOVA I V,EDER L V,et al. Prospects for the global helium industry development[J]. Energy Reports,2022,8:110−115.

[4] LIU Quanyou,LI Pengpeng,ZHU Dongya,et al. Helium resource in the petroliferous basins in China and its development prospects[J]. Cell Reports Physical Science,2024,5(6):102031.

[5] 唐金荣,张宇轩,周俊林,等. 全球氦气产业链分析与中国应对策略[J]. 地质通报,2023,42(1):1−13.

TANG Jinrong,ZHANG Yuxuan,ZHOU Junlin,et al. Analysis of global helium industry chain and China’s strategy[J]. Geological Bulletin of China,2023,42(1):1−13.

[6] 周起忠,闫卫东,胡容波,等. 全球氦气供需形势分析与展望[J]. 中国矿业,2025,34(2):493−502.

ZHOU Qizhong,YAN Weidong,HU Rongbo,et al. Analysis and outlook of the global helium supply and demand situation[J]. China Mining Magazine,2025,34(2):493−502.

[7] 陶士振,陈悦,杨怡青. 中国氦气资源及区带分类体系、控藏要素有效性与富集模式[J]. 天然气地球科学,2024,35(5):869−889.

TAO Shizhen,CHEN Yue,YANG Yiqing. Helium resource and play classification systems,effective reservoir control elements and enrichment patterns in China[J]. Natural Gas Geoscience,2024,35(5):869−889.

[8] 王晓锋,赵栋,张东东,等. 有效氦源岩类型及氦气释放机理[J]. 天然气地球科学,2025,36(3):381−389.

WANG Xiaofeng,ZHAO Dong,ZHANG Dongdong,et al. Characteristics of effective helium source rocks and releasing mechanism of helium[J]. Natural Gas Geoscience,2025,36(3):381−389.

[9] 尤兵,陈践发,肖洪,等. 富氦天然气藏氦源岩特征及关键评价参数[J]. 天然气工业,2022,42(11):141−154.

YOU Bing,CHEN Jianfa,XIAO Hong,et al. Characteristics and key evaluation parameters of helium source rocks in helium–rich natural gas reservoirs[J]. Natural Gas Industry,2022,42(11):141−154.

[10] 康锐,范立勇,惠洁,等. 鄂尔多斯盆地庆阳气田潜在氦源岩有效性评价[J]. 天然气地球科学,2025,36(3):413−429.

KANG Rui,FAN Liyong,HUI Jie,et al. Effectiveness evaluation of potential helium source rocks in Qingyang gas field,Ordos Basin[J]. Natural Gas Geoscience,2025,36(3):413−429.

[11] 陶刚,秦胜飞,齐雯,等. 构造抬升对柴达木盆地北缘氦气富集的控制作用[J]. 石油学报,2025,46(3):649−660.

TAO Gang,QIN Shengfei,QI Wen,et al. Controlling effect of tectonic uplift on helium enrichment in the northern margin of Qaidam Basin[J]. Acta Petrolei Sinica,2025,46(3):649−660.

[12] 韩伟,刘文进,李玉宏,等. 柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素[J]. 天然气地球科学,2020,31(3):385−392.

HAN Wei,LIU Wenjin,LI Yuhong,et al. Characteristics of rare gas isotopes and main controlling factors of radon enrichment in the northern margin of Qaidam Basin[J]. Natural Gas Geoscience,2020,31(3):385−392.

[13] 贺政阳,杨国军,周俊林,等. 柴达木盆地北缘天然气中氦气富集规律与远景区预测[J]. 西北地质,2022,55(4):45−60.

HE Zhengyang,YANG Guojun,ZHOU Junlin,et al. Helium enrichment law and predication of prospective areas of the north Qaidam Basin[J]. Northwestern Geology,2022,55(4):45−60.

[14] 马明,范桥辉. 常规天然气伴生氦气成藏条件:以柴达木盆地北缘地区为例[J]. 天然气地球科学,2023,34(4):587−600.

MA Ming,FAN Qiaohui. Accumulation conditions of helium in natural conventional gas reservoirs:Case study of the northern margin of Qaidam Basin[J]. Natural Gas Geoscience,2023,34(4):587−600.

[15] 周飞,张永庶,王彩霞,等. 柴达木盆地东坪–牛东地区天然气地球化学特征及来源探讨[J]. 天然气地球科学,2016,27(7):1312−1323.

ZHOU Fei,ZHANG Yongshu,WANG Caixia,et al. Geochemical characteristics and origin of natural gas in Dongping–Niudong areas,Qaidam Basin,China[J]. Natural Gas Geoscience,2016,27(7):1312−1323.

[16] 张晓宝,周飞,曹占元,等. 柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景[J]. 天然气地球科学,2020,31(11):1585−1592.

ZHANG Xiaobao,ZHOU Fei,CAO Zhanyuan,et al. Finding of the Dongping economic helium gas field in the Qaidam Basin,and helium source and exploration prospect[J]. Natural Gas Geoscience,2020,31(11):1585−1592.

[17] 谢菁,陈建洲,李青,等. 柴达木盆地北缘富氦天然气分布与成藏模式[J]. 天然气地球科学,2023,34(3):486−495.

XIE Jing,CHEN Jianzhou,LI Qing,et al. Helium accumulation model in the northern margin of Qaidam Basin[J]. Natural Gas Geoscience,2023,34(3):486−495.

[18] 孙秀建,马峰,白亚东,等. 柴达木盆地阿尔金山山前带基岩气藏差异富集因素[J]. 新疆石油地质,2020,41(4):394−401.

SUN Xiujian,MA Feng,BAI Yadong,et al. Differentiated hydrocarbon enrichment factors of bedrock gas reservoir in piedmont belt of Altun Mountain,Qaidam Basin[J]. Xinjiang Petroleum Geology,2020,41(4):394−401.

[19] HAN Wei,LIU Wenjin,LI Yuhong,et al. Characteristics of rare gas isotopes and main controlling factors of helium enrichment in the northern margin of the Qaidam Basin,China[J]. Journal of Natural Gas Geoscience,2020,5(5):299−306.

[20] LI Jian,WANG Xiaobo,XU Zhusong,et al. Helium resources accumulation regulations and their development prospects in China[J]. Journal of Natural Gas Geoscience,2024,9(5):303−319.

[21] 刘雨桐,段堃,张晓宝,等. 基岩型富氦气藏形成条件:以柴达木盆地东坪气田和美国中部潘汉德–胡果顿气田为例[J]. 天然气地球科学,2023,34(4):618−627.

LIU Yutong,DUAN Kun,ZHANG Xiaobao,et al. Formation conditions of helium–rich gas in bedrock reservoirs:Taking Dongping gas field in Qaidam Basin and Panhandle–Hugoton gas field in Central United States as examples[J]. Natural Gas Geoscience,2023,34(4):618−627.

[22] 田光荣,王建功,孙秀建,等. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏,2021,33(1):131−144.

TIAN Guangrong,WANG Jiangong,SUN Xiujian,et al. Hydrocarbon accumulation differences and main controlling factors of Jurassic petroleum system in Altun piedmont of Qaidam Basin[J]. Lithologic Reservoirs,2021,33(1):131−144.

[23] 中国工业气体工业协会. 氦气储量及资源评价技术规范:T/CCGA 90005–2024[S]. 北京:中国工业气体工业协会,2024.

[24] CHENG Anran,LOLLAR B S,GLUYAS J G,et al. Primary N2–He gas field formation in intracratonic sedimentary basins[J]. Nature,2023,615(7950):94−99.

[25] QIN Shengfei,ZHOU Guoxiao,LI Jiyuan,et al. The coupling action of helium and nitrogen enrichment and its significance[J]. Journal of Natural Gas Geoscience,2024,9(1):1−12.

[26] 陈耿荣,李靖,孙东,等. 四川盆地安岳气田贫氦原因探究[J/OL]. 地学前缘,2024:1–18 [2024-12-03]. https://doi.org/10.13745/j.esf.sf.2024.11.9

CHEN Gengrong,LI Jing,SUN Dong,et al. Cause of helium–poor in Anyue gas field,Sichuan Basin[J/OL]. Earth Science Frontiers,2024:1–18 [2024-12-03]. https://doi.org/10.13745/j.esf.sf.2024.11.9.

[27] BALLENTINE C J,BURNARD P G. Production,release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):481−538.

[28] 王海东,刘成林,范立勇,等. 古隆起背景下多源供氦氦气富集模式:以鄂尔多斯盆地庆阳气田为例[J]. 天然气地球科学,2025,36(3):430−443.

WANG Haidong,LIU Chenglin,FAN Liyong,et al. Helium enrichment patterns of multi–source helium supply in the context of paleo–upliftment:A case study of the Qingyang gas field in the Ordos Basin[J]. Natural Gas Geoscience,2025,36(3):430−443.

[29] 徐永昌,沈平,陶明信,等. 中国含油气盆地天然气中氦同位素分布[J]. 科学通报,1994,39(16):1505–1508

原文无英文

[30] 王杰,贾会冲,陶成,等. 鄂尔多斯盆地杭锦旗地区东胜气田氦气成因来源及富集规律[J]. 天然气地球科学,2023,34(4):566−575.

WANG Jie,JIA Huichong,TAO Cheng,et al. Source and enrichment regularity of helium in Dongsheng gas field of Hangjinqi area,Ordos Basin[J]. Natural Gas Geoscience,2023,34(4):566−575.

[31] 冯子齐,郝芳,胡林,等. 深部热流体活动背景下氦气的成因来源与运聚机制:以莺歌海盆地乐东底辟区为例[J]. 石油勘探与开发,2024,51(3):655−666.

FENG Ziqi,HAO Fang,HU Lin,et al. Genetic source,migration and accumulation of helium under deep hydrothermal fluid activities:A case study of Ledong diapir area in Yinggehai Basin,South China Sea[J]. Petroleum Exploration and Development,2024,51(3):655−666.

[32] 刘军,王波,周飞,等. 柴达木盆地东坪气田氦源岩成因及其对天然气藏中氦气的影响[J]. 天然气地球科学,2023,34(4):601−617.

LIU Jun,WANG Bo,ZHOU Fei,et al. Genesis of helium source rock in Dongping gas field,Qaidam Basin and its influence on helium in natural gas reservoirs[J]. Natural Gas Geoscience,2023,34(4):601−617.

[33] 江小强,肖渊甫,李建兵,等. 柴北缘阿木尼克山滩间山群火山岩地球化学特征及地质意义[J]. 地质找矿论丛,2020,35(1):73−84.

JIANG Xiaoqiang,XIAO Yuanfu,LI Jianbing,et al. Geochemical characteristics and geological significance of volcanic rocks in the Tanjianshan Formation of the Amunik mountains in the northern margin of the Qaidam Basin[J]. Contributions to Geology and Mineral Resources Research,2020,35(1):73−84.

[34] BROWN A A. PSFormation of high helium gases:A guide for explorationists[C]//AAPG Convention. New Orleans:AAPG,2010:11–14.

[35] 田继先,李剑,曾旭,等. 柴达木盆地东坪地区原油裂解气的发现及成藏模式[J]. 石油学报,2020,41(2):154−162.

TIAN Jixian,LI Jian,ZENG Xu,et al. Discovery and accumulation model of oil cracking gas reservoirs in Dongping area,Qaidam Basin[J]. Acta Petrolei Sinica,2020,41(2):154−162.

[36] 秦胜飞,周国晓,李济远,等. 氦气与氮气富集耦合作用及其重要意义[J]. 天然气地球科学,2023,34(11):1981−1992.

QIN Shengfei,ZHOU Guoxiao,LI Jiyuan,et al. The coupling effect of helium and nitrogen enrichment and its significance[J]. Natural Gas Geoscience,2023,34(11):1981−1992.

[37] 夏志远,刘占国,李森明,等. 柴达木盆地坪西地区副变质岩储集层特征[J]. 石油勘探与开发,2019,46(1):89−99.

XIA Zhiyuan,LIU Zhanguo,LI Senming,et al. Characteristics of parametamorphic rock reservoirs in Pingxi area,Qaidam Basin,NW China[J]. Petroleum Exploration and Development,2019,46(1):89−99.

[38] 杨鑫. 柴西北缘阿尔金山前带东段基岩时空分布规律研究[D]. 北京:中国石油大学(北京),2020.

YANG Xin. Temporal and spatial distribution of bedrock in the eastern part of the Altun Mountains in the northwestern Qaidam Basin[D]. Beijing:China University of Petroleum (Beijing),2020.

[39] QIN Shengfei,DOU Lirong,TAO Gang,et al. Helium enrichment theory and exploration ideas for helium–rich gas reservoirs[J]. Petroleum Exploration and Development,2024,51(5):1340−1356.

[40] Brown,A. Origin of helium and nitrogen in the Panhandle–Hugoton field of Texas,Oklahoma,and Kansas,United States. AAPG Bulletin. 2019,103(2):369–403.

[41] ZHANG Wen,LI Yuhong,ZHAO Fenghua,et al. Quantifying the helium and hydrocarbon accumulation processes using noble gases in the north Qaidam Basin,China[J]. Chemical Geology,2019,525:368−379.

[42] 李江涛,李志军,贾永禄,等. 柴达木盆地东坪基岩气藏的特殊地质条件及其开发模式探讨[J]. 天然气工业,2014,34(8):75−81.

LI Jiangtao,LI Zhijun,JIA Yonglu,et al. Special geological conditions and development modes of the Dongping basement gas reservoirs in the Qaidam Basin[J]. Natural Gas Industry,2014,34(8):75−81.

[43] 杨国军,蒲斌,徐凤兰,等. 东坪裂缝性气藏出水特征及水源分析[J]. 油气井测试,2015,24(6):25−27.

YANG Guojun,PU Bin,XU Fenglan,et al. Characteristic of producing water at Dongping hidden fracture and water source analysis[J]. Well Testing,2015,24(6):25−27.

[44] 房晶媛,马鸿礼,曾丽,等. 东坪气田东坪1区块基岩气藏水侵规律研究[J]. 天然气与石油,2023,41(3):103−110.

FANG Jingyuan,MA Hongli,ZENG Li,et al. Research on water invasion pattern of bedrock gas reservoir in Dongping 1 Block of Dongping gas field[J]. Natural Gas and Oil,2023,41(3):103−110.

[45] 李瑶. 东坪基岩气藏压裂参数优化研究[D]. 北京:中国石油大学(北京),2018.

LI Yao. Research on optimization of fracturing parameters in Dongping bedrock gas reservoir[D]. Beijing:China University of Petroleum (Beijing),2018.

[46] BALLENTINE C J,LOLLAR B S. Regional groundwater focusing of nitrogen and noble gases into the Hugoton–Panhandle giant gas field,USA[J]. Geochimica et Cosmochimica Acta,2002,66(14):2483−2497.

[47] 李朋朋,刘全有,朱东亚,等. 含油气盆地氦气分布特征与成藏机制[J]. 中国科学:地球科学,2024,54(10):3195−3218.

LI Pengpeng,LIU Quanyou,ZHU Dongya,et al. Distributions and accumulation mechanisms of helium in petroliferous basins[J]. Science China:Earth Sciences,2024,54(10):3195−3218.

[48] WANG Xiaofeng,LIU Quanyou,LIU Wenhui,et al. Helium accumulation in natural gas systems in Chinese sedimentary basins[J]. Marine and Petroleum Geology,2023,150:106155.

[49] SATHAYE K J,LARSON T E,HESSE M A. Noble gas fractionation during subsurface gas migration[J]. Earth and Planetary Science Letters,2016,450:1−9.

[50] 曹正林,孙秀建,汪立群,等. 柴达木盆地阿尔金山前东坪–牛东斜坡带天然气成藏条件[J]. 天然气地球科学,2013,24(6):1125−1131.

CAO Zhenglin,SUN Xiujian,WANG Liqun,et al. The gas accumulation conditions of Dongping–Niudong slope area in front of Aerjin Mountain of Qaidam Basin[J]. Natural Gas Geoscience,2013,24(6):1125−1131.

[51] ABROSIMOV V K,LEBEDEVA E Y. Solubility and thermodynamics of dissolution of helium in water at gas partial pressures of 0. 1–100 MPa within a temperature range of 278–353 K[J]. Russian Journal of Inorganic Chemistry,2013,58(7):808–812.

[52] 李玉宏,张文,王利,等. 亨利定律与壳源氦气弱源成藏:以渭河盆地为例[J]. 天然气地球科学,2017,28(4):495−501.

LI Yuhong,ZHANG Wen,WANG Li,et al. Henry’s Law and accumulation of crust–derived helium:A case from Weihe Basin,China[J]. Natural Gas Geoscience,2017,28(4):495−501.

[53] BARRY P H,LAWSON M,MEURER W P,et al. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field[J]. Geochimica et Cosmochimica Acta,2016,194:291−309.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.