Coal Geology & Exploration
Abstract
Background Artificial salt cavern underground helium storage is the optimal approach for achieving long-term, large-scale strategic helium storage and represents an essential solution for establishing an autonomous, controllable helium supply system. The core challenge currently constraining China’s development of salt cavern underground helium storage facilities lies in the sealing capacity of salt rock against high-concentration helium (helium volume fraction ≥70%). Methods Molecular dynamics simulation was used in this study, a composite model of salt rock slit pore and channel pore was constructed to reveal the influences of temperature-pressure conditions, helium concentration, and pore fluid properties on the occurrence state and diffusion patterns of helium in mixed gas systems.And the variations in helium self-diffusion coefficient and Fick diffusion coefficient under multi-factor coupling conditions were investigated. Results and Conclusions The simulation results indicate that helium primarily occurs in the free state in nanopores of salt rocks, with a minority distributed on mineral surfaces in an adsorbed state (heat adsorbed: 2.56-3.05 kJ/mol). This suggests an extremely weak competitive adsorption capacity of helium. When the helium volume fraction reaches 90% in narrow slit-like pores, helium occurs as larger helium clusters, facilitating the underground helium storage. Compared to pure helium, the helium in helium-methane mixed gas systems shows a significant decrease in the self-diffusion coefficient. Moreover, the self-diffusion coefficient of helium gradually decreases with increasing methane proportion, indicating that carrier gas can effectively inhibit the helium diffusion and migration. Besides, fluid properties in micropores in salt rocks serve as an important factor influencing the sealing performance of salt rocks. When pores in salt rocks are saturated with high-salinity formation water, the amount of helium escaping can be almost negligible on the timescale of helium storage facility operation compared to environments with a single gas phase.
Keywords
helium, salt cavern uderground helium storage facility, adsorption, diffusion, molecular simulation
DOI
10.12363/issn.1001-1986.25.04.0231
Recommended Citation
CHEN Zeya, WANYAN Qiqi, LIU Mancang,
et al.
(2025)
"Molecular simulation of adsorption and diffusion behaviors of high-concentration helium in salt cavern storage reservoirs,"
Coal Geology & Exploration: Vol. 53:
Iss.
9, Article 3.
DOI: 10.12363/issn.1001-1986.25.04.0231
Available at:
https://cge.researchcommons.org/journal/vol53/iss9/3
Reference
[1] 陈践发,刘凯旋,董勍伟,等. 天然气中氦资源研究现状及我国氦资源前景[J]. 天然气地球科学,2021,32(10):1436−1449.
CHEN Jianfa,LIU Kaixuan,DONG Qingwei,et al. Research status of helium resources in natural gas and prospects of helium resources in China[J]. Natural Gas Geoscience,2021,32(10):1436−1449.
[2] 许光,李玉宏,王宗起,等. 我国氦气资源调查评价进展[J]. 地质学报,2023,97(5):1711−1716.
XU Guang,LI Yuhong,WANG Zongqi,et al. Progress of investigation and evaluation of helium resources in China[J]. Acta Geologica Sinica,2023,97(5):1711−1716.
[3] 周照恒,周冬林,王建夫,等. 中国盐穴氦气储库建设可行性与关键技术[J]. 油气储运,2024,43(3):272−280.
ZHOU Zhaoheng,ZHOU Donglin,WANG Jianfu,et al. Feasibility and key technologies for the construction of salt cavern helium storage in China[J]. Oil & Gas Storage and Transportation,2024,43(3):272−280.
[4] 杨春和,梁卫国,魏东吼,等. 中国盐岩能源地下储存可行性研究[J]. 岩石力学与工程学报,2005,24(24):4409−4417.
YANG Chunhe,LIANG Weiguo,WEI Donghou,et al. Investigation on possibility of energy storage in salt rock in China[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(24):4409−4417.
[5] 安丰春,王文权,王晓明. 中国盐穴利用产业中长期发展方向与态势研究[J]. 天然气与石油,2025,43(1):144−150.
AN Fengchun,WANG Wenquan,WANG Xiaoming. Research on the medium– and long–term development direction and trend of salt cavern utilization industry in China[J]. Natural Gas and Oil,2025,43(1):144−150.
[6] 秦胜飞,窦立荣,陶刚,等. 氦气富集理论及富氦资源勘探思路[J]. 石油勘探与开发,2024,51(5):1160−1174.
QIN Shengfei,DOU Lirong,TAO Gang,et al. Helium enrichment theory and exploration ideas for helium–rich gas reservoirs[J]. Petroleum Exploration and Development,2024,51(5):1160−1174.
[7] 陶士振,杨怡青,陈悦,等. 氦气资源形成地质条件、成因机理与富集规律[J]. 石油勘探与开发,2024,51(2):436−452.
TAO Shizhen,YANG Yiqing,CHEN Yue,et al. Geological conditions,genetic mechanisms and accumulation patterns of helium resources[J]. Petroleum Exploration and Development,2024,51(2):436−452.
[8] 李玉宏,张文,王利,等. 亨利定律与壳源氦气弱源成藏:以渭河盆地为例[J]. 天然气地球科学,2017,28(4):495−501.
LI Yuhong,ZHANG Wen,WANG Li,et al. Henry’s Law and accumulation of crust–derived helium:A case from Weihe Basin,China[J]. Natural Gas Geoscience,2017,28(4):495−501.
[9] 尤兵,陈践发,肖洪,等. 壳源富氦天然气藏成藏模式及关键条件[J]. 天然气地球科学,2023,34(4):672−683.
YOU Bing,CHEN Jianfa,XIAO Hong,et al. Accumulation models and key conditions of crustal–derived helium–rich gas reservoirs[J]. Natural Gas Geoscience,2023,34(4):672−683.
[10] 李美俊,刘晓强,韩秋雅,等. 分子模拟在油气地球化学中的应用研究进展[J]. 石油与天然气地质,2021,42(4):919−930.
LI Meijun,LIU Xiaoqiang,HAN Qiuya,et al. Progress of molecular simulation application research in petroleum geochemistry[J]. Oil & Gas Geology,2021,42(4):919−930.
[11] LIU Xiaoqiang,LI Meijun,ZHANG Chenghua,et al. Mechanistic insight into the optimal recovery efficiency of CBM in sub–bituminous coal through molecular simulation[J]. Fuel,2020,266:117137.
[12] LIU Xiaoqiang,HE Xu,QIU Nianxiang,et al. Molecular simulation of CH4,CO2,H2O and N2 molecules adsorption on heterogeneous surface models of coal[J]. Applied Surface Science,2016,389:894−905.
[13] 卢双舫,沈博健,许晨曦,等. 利用GCMC分子模拟技术研究页岩气的吸附行为和机理[J]. 地球科学,2018,43(5):1783−1791.
LU Shuangfang,SHEN Bojian,XU Chenxi,et al. Study on adsorption behavior and mechanism of shale gas by using GCMC molecular simulation[J]. Earth Science,2018,43(5):1783−1791.
[14] 熊健,刘向君,梁利喜. 甲烷在黏土矿物狭缝孔中吸附的分子模拟研究[J]. 煤炭学报,2017,42(4):959−968.
XIONG Jian,LIU Xiangjun,LIANG Lixi. Molecular simulation study on the adsorption behaviors of methane in slit–like clay mineral pore[J]. Journal of China Coal Society,2017,42(4):959−968.
[15] HUANG Liang,NING Zhengfu,WANG Qing,et al. Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery[J]. Applied Energy,2018,210:28−43.
[16] LU Yiyu,CHEN Xiayu,TANG Jiren,et al. Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation[J]. Energy,2019,172:270−285.
[17] KRISHNA R,WESSELINGH J A. The Maxwell–Stefan approach to mass transfer[J]. Chemical Engineering Science,1997,52(6):861−911.
[18] CHEN Mingjun,KANG Yili,ZHANG Tingshan,et al. Methane diffusion in shales with multiple pore sizes at supercritical conditions[J]. Chemical Engineering Journal,2018,334:1455−1465.
[19] 孙晓,罗攀,汤积仁,等. 前置CO2混合压裂裂缝扩展与波及范围数值模拟研究[J]. 非常规油气,2024,11(6):52−57.
SUN Xiao,LUO Pan,TANG Jiren,et al. Numerical simulation study on fracture propagation and ripple range of pre-CO2 hybrid fracturing[J]. Unconventional Oil & Gas,2024,11(6):52−57.
[20] BARDELLI F,MONDELLI C,DIDIER M,et al. Hydrogen uptake and diffusion in Callovo–Oxfordian clay rock for nuclear waste disposal technology[J]. Applied Geochemistry,2014,49:168−177.
[21] FIROUZI M,ALNOAIMI K,KOVSCEK A,et al. Klinkenberg effect on predicting and measuring helium permeability in gas shales[J]. International Journal of Coal Geology,2014,123:62−68.
[22] YOU Bing,CHEN Jianfa,LIU Xiaoqiang,et al. Adsorption behavior of helium in quartz slit by molecular simulation[J]. Scientific Reports,2024,14(1):18529.
[23] SONG Dandan,GUAN Ping,ZHANG Chi,et al. Molecular dynamics simulations of helium transport through inorganic mineral nanopores[J]. Science China:Earth Sciences,2025,68(1):237−252.
[24] 刘晓强,尤兵,陈践发,等. 石英纳米孔中氦气与甲烷竞争扩散的分子模拟[J]. 长江大学学报(自然科学版),2024,21(3):86−94.
LIU Xiaoqiang,YOU Bing,CHEN Jianfa,et al. The competitive diffusion mechanism of helium and methane in quartz nanopore by molecular simulation[J]. Journal of Yangtze University (Natural Science Edition),2024,21(3):86−94.
[25] EINSTEIN A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen[J]. Annalen der Physik,1905,322(8):549−560.
[26] 尤兵. 富氦天然气藏氦气来源及成藏机制研究[D]. 北京:中国石油大学(北京),2024.
YOU Bing. Study on the helium source and accumulation mechanism of helium–rich natural gas reservoir[D]. Beijing:China University of Petroleum (Beijing),2024.
[27] REZK M G,FOROOZESH J. Study of convective–diffusive flow during CO2 sequestration in fractured heterogeneous saline aquifers[J]. Journal of Natural Gas Science and Engineering,2019,69:102926.
[28] ZHANG Weidong,WU Shuangliang,REN Shaoran,et al. The modeling and experimental studies on the diffusion coefficient of CO2 in saline water[J]. Journal of CO2 Utilization,2015,11:49−53.
[29] 贾承造,庞雄奇,宋岩. 论非常规油气成藏机理:油气自封闭作用与分子间作用力[J]. 石油勘探与开发,2021,48(3):437−452.
JIA Chengzao,PANG Xiongqi,SONG Yan. The mechanism of unconventional hydrocarbon formation:Hydrocarbon self–containment and intermolecular forces[J]. Petroleum Exploration and Development,2021,48(3):437−452.
[30] 李剑,严启团,张英,等. 柴达木盆地三湖地区第四系生物气盖层封闭机理的特殊性[J]. 中国科学(D辑:地球科学),2007,37(增刊2):36−42.
[31] BROWN A A. PSFormation of high helium gases:A guide for explorationists[C]//2010 AAPG Convention. New Orleans:AAPG,2010:11–14.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons