Coal Geology & Exploration
Abstract
Objective In China, mining operations are progressively extending to greater depths, with annual tunneling of mine roadways and tunnels nationwide reaching nearly 20000 km. In this context, mine (tunnel) accidents occur frequently, threatening the safety of state property and people’s lives. To meet the great demand for emergency rescue in mine (tunnel) accidents, drilling rescue, emerging as a hot topic, has been employed as an effective approach. Methods Techniques and equipment for efficient and safe drilling of surface and underground (tunnel) rescue boreholes were investigated by centering on two main roadmaps: (1) surface rescue equipment – forming techniques for search and rescue boreholes-engineering trials, and (2) underground rescue equipment-forming techniques for horizontal rescue boreholes-engineering trials. Consequently, the technical challenges in the efficient drilling and forming of deep rescue boreholes have been addressed by developing (1) a high-power truck-mounted surface rescue drilling rig, which allows for self-adaptive drilling, and a rapid rod changing device, (2) efficient drilling techniques of three-stage one-trip drilling for surface search boreholes and the gas-liquid dual-circulation drilling for rescue boreholes, as well as associated drilling tools, and (3) casing welding robots. These techniques and devices can meet the need for efficient forming of search and rescue boreholes. Furthermore, the technical difficulties in efficiently breaking rocks under complex collapse conditions and in borehole protection while drilling were resolved by developing underground modular casing while drilling (CwD) rigs for large-diameter boreholes, multi-functional operation vehicles, belt conveyors, rescue capsules, and a drilling site protection system. These devices enable the rapid construction of horizontal rescue passages. Results and Conclusions Two sets of integrated drilling rescue equipment have been developed: a surface truck-mounted drilling rig and an underground CwD rig. Furthermore, two rescue borehole drilling techniques have been devised, i.e., efficient forming techniques for surface vertical rescue boreholes and underground horizontal large-diameter rescue boreholes. These sets of equipment and techniques constitute a technology and equipment system for surface and underground joint drilling rescue. They have been subjected to joint commissioning, engineering tests, and integration trials at sites in Wuxiang of Shanxi Province, Xuzhou of Jiangsu Province, Shangluo of Shaanxi Province, and Yuxi of Yunnan Province, verifying their reliability, applicability, and safety. These techniques and equipment will support mine rescue in China.
Keywords
mine disaster, surface rescue borehole, truck-mounted drilling rig, self-adaptive control, underground horizontal rescue borehole, multi-stage casing while drilling (CwD), metal detection and demolition, horizontal rescue capsule
DOI
10.12363/issn.1001-1986.25.07.0567
Recommended Citation
YAO Ningping, ZOU Zujie, ZHANG Zhonghai,
et al.
(2025)
"Technologies and equipment for efficient drilling rescue,"
Coal Geology & Exploration: Vol. 53:
Iss.
9, Article 20.
DOI: 10.12363/issn.1001-1986.25.07.0567
Available at:
https://cge.researchcommons.org/journal/vol53/iss9/20
Reference
[1] 袁亮. 煤矿典型动力灾害风险判识及监控预警技术研究进展[J]. 煤炭学报,2020,45(5):1557−1566.
YUAN Liang. Research progress on risk identification,assessment,monitoring and early warning technologies of typical dynamic hazards in coal mines[J]. Journal of China Coal Society,2020,45(5):1557−1566.
[2] 高广伟,张禄华. 大直径钻孔救援的实践与思考:以山东平邑“12·25”石膏矿坍塌事故救援为例[J]. 中国应急管理,2016(3):74–75.
[3] 王志坚. 矿山钻孔救援技术的研究与务实思考[J]. 中国安全生产科学技术,2011,7(1):5−9.
WANG Zhijian. Considering and researching of drilling technology in mine rescue[J]. Journal of Safety Science and Technology,2011,7(1):5−9.
[4] 田宏亮,邹祖杰,郝世俊,等. 矿山灾害生命保障救援通道快速安全构建关键技术与装备[J]. 煤田地质与勘探,2022,50(11):1−13.
TIAN Hongliang,ZOU Zujie,HAO Shijun,et al. Key technologies and equipment of quickly and safely building life support and rescue channel in mine disaster[J]. Coal Geology & Exploration,2022,50(11):1−13.
[5] 李亮. 平邑石膏矿坍塌事故救援成功后的几点思考[J]. 探矿工程(岩土钻掘工程),2016,43(10):281−286.
LI Liang. Discussion of Pingyi gypsum mine collapse accident rescue[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2016,43(10):281−286.
[6] 杨涛,杜兵建. 山东平邑石膏矿矿难大口径救援钻孔施工技术[J]. 探矿工程(岩土钻掘工程),2017,44(5):19−23.
YANG Tao,DU Bingjian. Construction technology of large diameter rescue borehole in Pingyi gypsum mine disaster of Shandong[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2017,44(5):19−23.
[7] 凡东,邹祖杰,王瑞泽,等. 地面救援车载钻机的研制[J]. 煤田地质与勘探,2022,50(11):35−44.
FAN Dong,ZOU Zujie,WANG Ruize,et al. Development of rescue truck–mounted drilling rig in ground emergency[J]. Coal Geology & Exploration,2022,50(11):35−44.
[8] 邹祖杰,田宏亮,刘庆修,等. 救援车载钻机同步自平衡式给进系统设计与应用[J]. 煤田地质与勘探,2022,50(11):76−84.
ZOU Zujie,TIAN Hongliang,LIU Qingxiu,et al. Research and application of synchronous self–balancing feed system for rescue truck–mounted drilling rig[J]. Coal Geology & Exploration,2022,50(11):76−84.
[9] 凡东. ZMK5530TZJ100型车载钻机的试验研究[J]. 煤田地质与勘探,2018,46(2):201−204.
FAN Dong. Test research on ZMK5530TZJ100 truck–mounted drilling rig[J]. Coal Geology & Exploration,2018,46(2):201−204.
[10] 常江华. 复杂工况车载钻机电液系统动态特性及控制方法研究[D]. 北京:煤炭科学研究总院,2019.
CHANG Jianghua. Dynamic characteristics and control method of electro–hydraulic system of truck–mounted drilling rig on complex operating conditions[D]. Beijing:China Coal Research Institute,2019.
[11] 田宏亮. 全液压动力头式钻机液压系统动态分析及控制方法的研究[D]. 北京:煤炭科学研究总院,2008.
TIAN Hongliang. Dynamic analysis and control methods study on hydraulic system of all hydraulic head type drilling rigs[D]. Beijing:China Coal Research Institute,2008.
[12] 常江华,赵良,鲁飞飞,等. ZMK5550TZJF50/120型救援车载钻机钻压自适应电液系统研究[J]. 煤田地质与勘探,2022,50(11):67−75.
CHANG Jianghua,ZHAO Liang,LU Feifei,et al. Adaptive electro–hydraulic system of ZMK5550TZJF50/120 truck–mounted drilling rig with WOB adaptive control function[J]. Coal Geology & Exploration,2022,50(11):67−75.
[13] 刘修善,何树山. 井眼轨道的软着陆设计模型及其应用[J]. 天然气工业,2002,22(2):43−45.
LIU Xiushan,HE Shushan. Well–path soft landing design model and its application[J]. Natural Gas Industry,2002,22(2):43−45.
[14] SAWARYN S J,THOROGOOD J L. A compendium of directional calculations based on the minimum curvature method[J]. SPE Drilling & Completion,2005,20(1):24−36.
[15] 高德利. 易斜地层防斜打快钻井理论与技术探讨[J]. 石油钻探技术,2005,33(5):16−19.
GAO Deli. Discussions on theories and techniques about rapid drilling while preventing deviating in formations tending to deflecting[J]. Petroleum Drilling Techniques,2005,33(5):16−19.
[16] 高科,张聪,赵研,等. 救援钻孔用双钻头扭矩自平衡钻进系统理论与实验[J]. 煤田地质与勘探,2022,50(11):85−93.
GAO Ke,ZHANG Cong,ZHAO Yan,et al. Theory and experiment of the dual–bit torque self–balancing drilling system for rescue drilling[J]. Coal Geology & Exploration,2022,50(11):85−93.
[17] 张彪,康玉国,黄勇,等. 矿山救援地面生命保障孔高效成孔关键技术[J]. 煤田地质与勘探,2022,50(11):14−23.
ZHANG Biao,KANG Yuguo,HUANG Yong,et al. Key technologies of surface efficient life support hole forming for mine rescue[J]. Coal Geology & Exploration,2022,50(11):14−23.
[18] 郝世俊,莫海涛. 地面大直径应急救援钻孔成孔工艺设计与分析[J]. 煤田地质与勘探,2021,49(1):277−284.
HAO Shijun,MO Haitao. Design and analysis of hole–forming technology for surface large diameter emergency rescue borehole[J]. Coal Geology & Exploration,2021,49(1):277−284.
[19] 郝世俊,张晶. 大直径救援井高效钻井技术及装备现状与展望[J]. 煤炭科学技术,2021,49(4):75−81.
HAO Shijun,ZHANG Jing. Development status and prospect of high–efficiency drilling technology and equipment for large–diameter rescue wells[J]. Coal Science and Technology,2021,49(4):75−81.
[20] 莫海涛,郝世俊,赵江鹏. 煤矿区地面大直径钻孔成孔关键技术与装备[J]. 煤炭科学技术,2021,49(5):190−197.
MO Haitao,HAO Shijun,ZHAO Jiangpeng. Key technology and equipment of hole–forming for surface large diameter borehole in coal mine area[J]. Coal Science and Technology,2021,49(5):190−197.
[21] 赵江鹏,郝世俊. 气动潜孔锤技术在矿山事故钻孔救援中的应用[J]. 煤田地质与勘探,2022,50(11):24−34.
ZHAO Jiangpeng,HAO Shijun. Application of pneumatic DTH hammer in drilling rescue of mine accidents[J]. Coal Geology & Exploration,2022,50(11):24−34.
[22] 赵江鹏. 大直径反循环潜孔锤的密封方法与试验研究[J]. 探矿工程(岩土钻掘工程),2015,42(12):61−63.
ZHAO Jiangpeng. Sealing method for large–diameter reverse circulation DTH and the experimental study[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2015,42(12):61−63.
[23] 高啟瑜,曹主军,张强,等. 大直径集束潜孔锤正循环快速扩孔钻进技术试验[J]. 探矿工程(岩土钻掘工程),2015,42(9):38−41.
GAO Qiyu,CAO Zhujun,ZHANG Qiang,et al. Tests of normal circulation rapid reaming technology by large diameter cluster DTH hammer[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2015,42(9):38−41.
[24] 李必智,郝世俊,刘明军,等. 大直径救援井动载荷作用下安全透巷距离数值模拟[J]. 煤田地质与勘探,2021,49(2):260−266.
LI Bizhi,HAO Shijun,LIU Mingjun,et al. Numerical simulation of safe distance through roadway drilling under dynamic load of large diameter rescue well[J]. Coal Geology & Exploration,2021,49(2):260−266.
[25] 刘明军,郝世俊,郑玉柱,等. 大直径救援井安全透巷技术研究[J]. 煤炭科学技术,2022,50(3):118−126.
LIU Mingjun,HAO Shijun,ZHENG Yuzhu,et al. Study on safe tunneling penetration technology for large diameter rescue wells[J]. Coal Science and Technology,2022,50(3):118−126.
[26] 邹祖杰. 多功能矿用救援柔性提升舱的研制及应用[J]. 煤矿安全,2024,55(10):228−235.
ZOU Zujie. Development and application of multi–functional flexible lifting cabin for mine rescue[J]. Safety in Coal Mines,2024,55(10):228−235.
[27] 刘庆修. 大直径深孔载人救援提升装备关键技术研究[D]. 北京:煤炭科学研究总院,2019.
LIU Qingxiu. Key technology research on manned rescue lifting equipment for deep hole with large diameter[D]. Beijing:China Coal Research Institute,2019.
[28] 邹祖杰,凡东,刘庆修,等. 矿山地面大直径钻孔救援提升装备研制[J]. 煤炭科学技术,2017,45(12):160−165.
ZOU Zujie,FAN Dong,LIU Qingxiu,et al. Research and development on rescue lifting equipment of large diameter borehole at mine ground[J]. Coal Science and Technology,2017,45(12):160−165.
[29] 顾海荣,单增海,王龙鹏,等. 大直径钻孔救援提升装备研究进展[J]. 煤田地质与勘探,2022,50(11):45−57.
GU Hairong,SHAN Zenghai,WANG Longpeng,et al. Research progress of lifting equipment for large–diameter borehole rescue[J]. Coal Geology & Exploration,2022,50(11):45−57.
[30] 王超,樊林玉,黄志凌,等. 矿井应急救援舱研究[J]. 黑龙江科技信息,2014(32):51.
[31] 李付星,孙健. 人机工程中人体尺寸的修正与重建方法研究[J]. 机械设计,2015,32(4):116−120.
LI Fuxing,SUN Jian. Research on correction and reconstruction methods of human dimensions in human–machine engineering[J]. Journal of Machine Design,2015,32(4):116−120.
[32] 范淑果,郝宏伟,杨建芳,等. 最大内接圆法评定圆度误差值的程序设计技术[J]. 燕山大学学报,2005,29(3):264−266.
FAN Shuguo,HAO Hongwei,YANG Jianfang,et al. Program design of maximum inscribed circle method for evaluation of errors of circle roundness[J]. Journal of Yanshan University,2005,29(3):264−266.
[33] 刘顺芳,石建玲. 最大内接圆法评定圆度误差值的快速、精确算法[J]. 计量技术,2006,50(3):17–19.
[34] 李洋,邹鑫芳. 基于OpenGL的三维井眼轨迹软件在WPF中的设计与实现[J]. 电脑知识与技术,2013,9(8):1801−1805.
LI Yang,ZOU Xinfang. Design and implementation of three dimensional well track software based on OpenGL and WPF[J]. Computer Knowledge and Technology,2013,9(8):1801−1805.
[35] 王定远. LabVIEW下的一种通用摄像头驱动方法[J]. 国外电子测量技术,2011,30(12):56−59.
WANG Dingyuan. Method of driving universal cameras in LabVIEW[J]. Foreign Electronic Measurement Technology,2011,30(12):56−59.
[36] 王雷,朱玉芹,张维娜,等. 煤矿大直径救援钻孔顶管钻进装备关键技术研究[J]. 煤田地质与勘探,2022,50(11):58−66.
WANG Lei,ZHU Yuqin,ZHANG Weina,et al. Research on key technology of pipe jacking drilling equipment for large–diameter rescue borehole of coal mine[J]. Coal Geology & Exploration,2022,50(11):58−66.
[37] 李健. 土压平衡顶管机刀盘的力学分析及优化设计[J]. 洛阳理工学院学报(自然科学版),2021,31(2):29−34.
LI Jian. Mechanical analysis and optimal design of cutter head of earth pressure balance pipe jacking machine[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition),2021,31(2):29−34.
[38] 许有俊,黄正东,张旭,等. 大断面土压平衡矩形顶管多刀盘实测扭矩参数研究[J]. 现代隧道技术,2021,58(5):96−103.
XU Youjun,HUANG Zhengdong,ZHANG Xu,et al. Study on measured torque parameters of large–section rectangular EPB pipe jacking machine with multiple cutterheads[J]. Modern Tunnelling Technology,2021,58(5):96−103.
[39] 王雷. 井下大断面救援通道顶管快速构建技术与装备[J]. 煤矿安全,2019,50(12):85−88.
WANG Lei. Quick construction technology and equipment of pipe jacking in large section underground rescue channel[J]. Safety in Coal Mines,2019,50(12):85−88.
[40] 赵亮吉,李玉琴. 复合地层中顶管机液压系统参数研究[J]. 铁道建筑技术,2020(11):38−41.
ZHAO Liangji,LI Yuqin. Research on hydraulic system parameters of pipe jacking machine in composite formation[J]. Railway Construction Technology,2020(11):38−41.
[41] 高立康,张海蛟. 粉砂岩及细砂地层的泥水平衡顶管技术[J]. 中国建材科技,2020,29(5):121−123.
GAO Likang,ZHANG Haijiao. Mud–water balance pipe jacking technology in siltstone and fine sand formations[J]. China Building Materials Science & Technology,2020,29(5):121−123.
[42] 胡博. 复杂地质条件下液压驱动顶管机的设计与应用[J]. 工程机械与维修,2020(5):63–65.
[43] 吕庆洲,唐夕明. 顶管机在含有钢筋等柔性杂物复杂地层中的改进及应用[J]. 隧道建设(中英文),2020,40(7):1066−1071.
LYU Qingzhou,TANG Ximing. Improvement and application of pipe jacking machine in complex stratum with steel bar and other flexible sundries[J]. Tunnel Construction,2020,40(7):1066−1071.
[44] 许超,姚宁平,姜磊,等. 矿山救援大直径多级跟管钻进关键工艺参数[J]. 煤田地质与勘探,2025,53(4):235−242.
XU Chao,YAO Ningping, JIANG Lei, et al. Critical technical parameters of large-diameter multi-stage casing drilling for mine rescue[J]. Coal Geology & Exploration,2025,53(4):235−242.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons