Coal Geology & Exploration
Abstract
Background The Ordos Basin enjoys abundant natural gas resources, which generally bear helium, making this basin hold great helium resource potential. In this case, detailed exploration is essential for the future transition from natural gas-helium joint exploration to special helium exploration in the basin.Objective and Method To systematically investigate the distribution and potential of helium resources in the Ordos Basin, natural gas samples were taken from different areas of the basin for analysis and tests. To examine the primary factors controlling helium accumulation and enrichment, this study conducted a systematic analysis of the basement, sedimentary rock layers, fault systems, and tectonic evolutionary process of the basin.Results and conclusions Two helium enrichment patterns are identified in the basin and can be further subdivided into three types. Specifically, two helium enrichment patterns are determined according to their carrier types: alkane and geothermal water as carriers. The alkane-carried gas can be further subdivided into two types based on the distance between gas reservoirs and the basement. The first type is represented by the Dongsheng gas field, characterized by the direct contact between gas reservoirs and the basement (vertical distance: less than 50 m) and an average helium volume fraction of 0.118%. The second type is exemplified by the Qingyang gas field, characterized by the near-distance contact between gas reservoirs and the basement (vertical distance: less than 1 500 m) and an average helium volume fraction of 0.105%. The geothermal water-carried gas refers to helium-rich water-soluble gas migrating via deep-seated faults. Such gas is represented by the Weihe graben, characterized by vertical distances of 1 500‒5 000 m from water-soluble gas above geothermal water to the basement and an average helium volume fraction of 2.5%. By analyzing the geological characteristics and helium enrichment factors of helium-rich areas, this study determined the primary factors controlling helium enrichment. Specifically, ancient U- and Th-rich granites in the shallowly buried basement are identified as important helium source rocks while also providing a material basis for helium enrichment. The deep-seated faults play a key role in connecting helium to shallow reservoirs. For instance, the basal strike-slip fault zone within the Qinyang gas field produces controlling effects on the Qingyang and Zhengning gas fields, also serving as a play fairway for helium enrichment. In the Qingyang gas field, areas with large-scale faults in the gas layers of the Taiyuan Formation exhibit high helium volume fractions (average: 0.105%). The formation of large-scale helium is inseparable from natural gas and water, with helium always emerging as an associated product. Therefore, effective reservoir-cap rock assemblages favor helium enrichment. Based on research on the magnetic anomalies and the distribution characteristics of deep-seated faults in the Ordos Basin, this study identified two optimal helium enrichment areas: shallow-buried areas of basal granites and areas with deep-seated faults. In combination with the current reservoir-cap rock configurations of gas fields, it determined nine play fairways with a total area of 40 000 km2 in the basin: the Hetao Basin, the Yimeng paleocontinent, the northern Tianhuan sag, the Dingbian fault zone, the Zhidan-Jiaxian fault zone with a strong magnetic field, the Zijinshan volcanic rock invasion zone, the Qingyang paleo-uplift, the Yichuan-Huanglong fault zone, and the Weihe graben.
Keywords
helium-rich gas field, helium enrichment factors, play fairway of helium, Ordos Basin, Dongsheng gas field, Qingyang gas field, Weihe Basin
DOI
10.12363/issn.1001-1986.25.01.0073
Recommended Citation
GAO Jianrong, TAO Shizhen, LIU Xiangbai,
et al.
(2025)
"Enrichment factors and play fairway mapping of helium in typical zones of the Ordos Basin,"
Coal Geology & Exploration: Vol. 53:
Iss.
9, Article 2.
DOI: 10.12363/issn.1001-1986.25.01.0073
Available at:
https://cge.researchcommons.org/journal/vol53/iss9/2
Reference
[1] 陶士振,杨怡青,陈悦,等. 氦气资源形成地质条件、成因机理与富集规律[J]. 石油勘探与开发,2024,51(2):436−452.
TAO Shizhen,YANG Yiqing,CHEN Yue,et al. Geological conditions,genetic mechanisms and accumulation patterns of helium resources[J]. Petroleum Exploration and Development,2024,51(2):436−452.
[2] 陈践发,刘凯旋,董勍伟,等. 天然气中氦资源研究现状及我国氦资源前景[J]. 天然气地球科学,2021,32(10):1436−1449.
CHEN Jianfa,LIU Kaixuan,DONG Qingwei,et al. Research status of helium resources in natural gas and prospects of helium resources in China[J]. Natural Gas Geoscience,2021,32(10):1436−1449.
[3] 刘祥柏,陶士振,杨秀春,等. 煤系氦气富集机理与资源潜力:以鄂尔多斯盆地东缘为例[J]. 煤田地质与勘探,2024,52(9):49−66.
LIU Xiangbai,TAO Shizhen,YANG Xiuchun,et al. Accumulation mechanisms and resource potential of helium in coal measures:A case study of the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2024,52(9):49−66.
[4] BARNES M A,ANTHONY E Y,WILLIAMS I,et al. Architecture of a 1. 38–1. 34 Ga granite–rhyolite complex as revealed by geochronology and isotopic and elemental geochemistry of subsurface samples from west Texas,USA[J]. Precambrian Research,2002,119(1/2/3/4):9–43.
[5] BALL M M,HENRY M E,FREZON S E. Petroleum geology of the Anadarko Basin region,Province (115),Kansas,Oklahoma,and Texas[R]. Virginia:United States Geological Survey,1991.
[6] 范立勇,单长安,李进步,等. 基于磁力资料的鄂尔多斯盆地氦气分布规律[J]. 天然气地球科学,2023,34(10):1780−1789.
FAN Liyong,SHAN Chang’an,LI Jinbu,et al. Distribution of helium resources in Ordos Basin based on magnetic data[J]. Natural Gas Geoscience,2023,34(10):1780−1789.
[7] BROWN A A. PSFormation of high helium gases:A guide for explorationists[C]. New Orleans:AAPG Convention,2010.
[8] 戴金星,李剑,侯路. 鄂尔多斯盆地氦同位素的特征[J]. 高校地质学报,2005,11(4):473−478.
DAI Jinxing,LI Jian,HOU Lu. Characteristics of helium isotopes in the Ordos Basin[J]. Geological Journal of China Universities,2005,11(4):473−478.
[9] DAI Jinxing,NI Yunyan,QIN Shengfei,et al. Geochemical characteristics of He and CO2 from the Ordos (cratonic) and Bohaibay (rift) basins in China[J]. Chemical Geology,2017,469:192−213.
[10] 刘成林,丁振刚,范立勇,等. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质,2024,45(2):384−392.
LIU Chenglin,DING Zhengang,FAN Liyong,et al. Geochemical characteristics and enrichment factors of helium–bearing natural gas in the Ordos Basin[J]. Oil & Gas Geology,2024,45(2):384−392.
[11] 刘祥柏,陶士振,杨秀春,等. 鄂尔多斯盆地东缘煤系富氦资源的发现及其资源潜力与勘探开发对策[J]. 油气与新能源,2024,36(4):38−48.
LIU Xiangbai,TAO Shizhen,YANG Xiuchun,et al. Discovery of helium–rich resources in coal seams of the eastern margin of Ordos Basin and its resource potential as well as exploration & development strategies[J]. Petroleum and New Energy,2024,36(4):38−48.
[12] 李明,高建荣. 鄂尔多斯盆地基底断裂与火山岩的分布[J]. 中国科学:地球科学,2010,40(8):1005−1013.
LI Ming,GAO Jianrong. Basement faults and volcanic rock distributions in the Ordos Basin[J]. Science China:Earth Sciences,2010,40(8):1005−1013.
[13] 李冰,宋燕兵,石磊,等. 鄂尔多斯盆地的磁场特征及地质意义[J]. 物探与化探,2019,43(4):767−777.
LI Bing,SONG Yanbing,SHI Lei,et al. Characteristics of gravity and magnetic fields in Ordos Basin and their geological significance[J]. Geophysical and Geochemical Exploration,2019,43(4):767−777.
[14] 宁媛丽,周子阳,孙栋华. 重磁资料在鄂尔多斯盆地西南缘基底研究中的应用[J]. 物探与化探,2020,44(1):34−41.
NING Yuanli,ZHOU Ziyang,SUN Donghua. The application of magnetic and gravity data on research the basement in the southwest of Ordos Basin[J]. Geophysical and Geochemical Exploration,2020,44(1):34−41.
[15] 邵伟,高焕平,徐斌. 鄂尔多斯盆地南缘重磁电剖面深部结构特征及地质意义[J]. 世界有色金属,2019(9):259.
SHAO Wei,GAO Huanping,XU Bin. Deep structure characteristics and geological significance of gravity,magnetic and electric profile in the southern margin of Ordos Basin[J]. World Nonferrous Metals,2019(9):259.
[16] 赵宏刚. 鄂尔多斯盆地构造热演化与砂岩型铀成矿[J]. 铀矿地质,2005,21(5):275−282.
ZHAO Honggang. The relationship between tectonic–thermal evolution and sandstone–type uranium ore–formation in Ordos Basin[J]. Uranium Geology,2005,21(5):275−282.
[17] 李明,闫磊,韩绍阳. 鄂尔多斯盆地基底构造特征[J]. 吉林大学学报(地球科学版),2012,42(增刊3):38−43.
LI Ming,YAN Lei,HAN Shaoyang. The basement tectonic characteristics in Ordos Basin[J]. Journal of Jilin University (Earth Science Edition),2012,42(Sup.3):38−43.
[18] 包洪平,邵东波,郝松立,等. 鄂尔多斯盆地基底结构及早期沉积盖层演化[J]. 地学前缘,2019,26(1):33−43.
BAO Hongping,SHAO Dongbo,HAO Songli,et al. Basement structure and evolution of early sedimentary cover of the Ordos Basin[J]. Earth Science Frontiers,2019,26(1):33−43.
[19] 何发岐,王杰,赵永强,等. 鄂尔多斯盆地东胜富氦气田成藏特征及其大地构造背景[J]. 古地理学报,2022,24(5):937−950.
HE Faqi,WANG Jie,ZHAO Yongqiang,et al. Accumulation characteristics of Dongsheng helium–rich gas field in Ordos Basin and its tectonic background[J]. Journal of Palaeogeography (Chinese Edition),2022,24(5):937−950.
[20] 何发岐,王付斌,王杰,等. 鄂尔多斯盆地东胜气田氦气分布规律及特大型富氦气田的发现[J]. 石油实验地质,2022,44(1):1−10.
HE Faqi,WANG Fubin,WANG Jie,et al. Helium distribution of Dongsheng gas field in Ordos Basin and discovery of a super large helium–rich gas field[J]. Petroleum Geology & Experiment,2022,44(1):1−10.
[21] 刘成林,丁振刚,陈践发,等. 鄂尔多斯盆地氦源岩特征及生氦潜力[J]. 石油与天然气地质,2023,44(6):1546−1554.
LIU Chenglin,DING Zhengang,CHEN Jianfa,et al. Characteristics and helium–generating potential of helium source rocks in the Ordos Basin[J]. Oil & Gas Geology,2023,44(6):1546−1554.
[22] 杨蒙蒙. 鄂尔多斯盆地基底构造与断裂确定地热资源分布[J]. 地下水,2014,36(5):81.
[23] 陶士振,吴义平,陶小晚,等. 氦气地质理论认识、资源勘查评价与全产业链一体化评价关键技术[J]. 地学前缘,2024,31(1):351−367.
TAO Shizhen,WU Yiping,TAO Xiaowan,et al. Helium:Accumulation model,resource exploration and evaluation,and integrative evaluation of the entire industrial chain[J]. Earth Science Frontiers,2024,31(1):351−367.
[24] 韩伟,李玉宏,任战利,等. 渭河盆地构造热演化对富氦天然气成藏的影响[J]. 天然气地球科学,2025,36(3):390−398.
HAN Wei,LI Yuhong,REN Zhanli,et al. Influence of tectonic thermal evolution on the accumulation of helium–rich natural gas in Weihe Basin[J]. Natural Gas Geoscience,2025,36(3):390−398.
[25] 王红伟,刘宝宪,马占荣,等. 渭河盆地前新生界分布的物探特征及油气成藏条件分析[J]. 地球物理学进展,2010,25(4):1280−1287.
WANG Hongwei,LIU Baoxian,MA Zhanrong,et al. Analysis of distribution of geophysical characteristics and reservoir–forming conditions in the pre–Cenozoic strata in the Weihe Basin[J]. Progress in Geophysics,2010,25(4):1280−1287.
[26] 任战利,崔军平,郭科,等. 鄂尔多斯盆地渭北隆起抬升期次及过程的裂变径迹分析[J]. 科学通报,2015,60(14):1298−1309.
REN Zhanli,CUI Junping,GUO Ke,et al. Fission–track analysis of uplift times and processes of the Weibei Uplift in the Ordos Basin[J]. Chinese Science Bulletin,2015,60(14):1298−1309.
[27] 师亚芹,冯希杰,戴王强,等. 渭河断裂西安段的展布及其结构特征[J]. 地震学报,2008,30(6):634−647.
SHI Yaqin,FENG Xijie,DAI Wangqiang,et al. Distribution and structural characteristics of the Xi’an section of the Weihe fault[J]. Acta Seismologica Sinica,2008,30(6):634−647.
[28] 李玉宏,王行运,韩伟. 渭河盆地氦气资源远景调查进展与成果[J]. 中国地质调查,2015,2(6):1−6.
LI Yuhong,WANG Xingyun,HAN Wei. Progress and achievements of helium gas resources survey in Weihe Basin[J]. Geological Survey of China,2015,2(6):1−6.
[29] 张朝锋. 渭河地堑的形成演化及其动力学机制[D]. 西安:西北大学,2011.
ZHANG Chaofeng. Evolution and dynamics mechanism of Weihe graben[D]. Xi’an:Northwest University,2011.
[30] 李玉宏,张文,王利,等. 亨利定律与壳源氦气弱源成藏:以渭河盆地为例[J]. 天然气地球科学,2017,28(4):495−501.
LI Yuhong,ZHANG Wen,WANG Li,et al. Henry’s Law and accumulation of crust–derived helium:A case from Weihe Basin,China[J]. Natural Gas Geoscience,2017,28(4):495−501.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons