•  
  •  
 

Coal Geology & Exploration

Authors

LIU Dongming, State Key Laboratory of Deep Earth Exploration and Imaging, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Tianjin 300300, China; Laboratory of Geophysical EM Probing Technologies, Ministry of Natural Resources, Tianjin 300300, China; State Research Center of Modern Geological Exploration Engineering Technology, Tianjin 300300, ChinaFollow
LIN Zhenzhou, State Key Laboratory of Deep Earth Exploration and Imaging, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Tianjin 300300, China; Laboratory of Geophysical EM Probing Technologies, Ministry of Natural Resources, Tianjin 300300, China; State Research Center of Modern Geological Exploration Engineering Technology, Tianjin 300300, ChinaFollow
LIU Dongyan, Beijing Urban and Rural Construction Survey and Design Institute Co., Ltd., Beijing 100071, China
QIU Changyi, The First Geological Brigade of Jiangxi Provincial Geological Bureau, Nanchang 330052, China
LIANG Mingxing, State Key Laboratory of Deep Earth Exploration and Imaging, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Tianjin 300300, China; Laboratory of Geophysical EM Probing Technologies, Ministry of Natural Resources, Tianjin 300300, China; State Research Center of Modern Geological Exploration Engineering Technology, Tianjin 300300, China
ZHAI Jinghong, State Key Laboratory of Deep Earth Exploration and Imaging, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Tianjin 300300, China; Laboratory of Geophysical EM Probing Technologies, Ministry of Natural Resources, Tianjin 300300, China; State Research Center of Modern Geological Exploration Engineering Technology, Tianjin 300300, China
ZHANG Jie, State Key Laboratory of Deep Earth Exploration and Imaging, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Tianjin 300300, China; Laboratory of Geophysical EM Probing Technologies, Ministry of Natural Resources, Tianjin 300300, China; State Research Center of Modern Geological Exploration Engineering Technology, Tianjin 300300, China
JIANG Zhengzhong, State Key Laboratory of Deep Earth Exploration and Imaging, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Tianjin 300300, China; Laboratory of Geophysical EM Probing Technologies, Ministry of Natural Resources, Tianjin 300300, China; State Research Center of Modern Geological Exploration Engineering Technology, Tianjin 300300, China

Abstract

Background Under the guidance of the strategies to achieve the goals of peak carbon dioxide emissions and carbon neutrality, salt cavern storage facilities, serving as key infrastructure for clean energy strategic reserves, have emerged as a core approach to promoting the transformation and upgrade of the salt industry and to building a low-carbon energy system in China. Jiangxi Province, located in the middle part of the Yangtze River Economic Belt, is endowed with abundant salt rock resources, making it a national priority zone for developing resources for salt cavern storage. However, traditional methods for the siting of the facilities rely on drilling and coring, facing bottlenecks such as high costs and inadequate vertical continuity assessment. Therefore, there is an urgent need to develop efficient and precise geological evaluation techniques to provide support for the scientific siting of salt cavern storage.Objective and Method This study investigated the borehole ZK01 used for the preliminary feasibility study of the salt cavern storage project of the Qingjiang Salt Mine. By integrating multiparameter geophysical logging and the geological records of cores, this study systematically analyzed the structural characteristics of salt-bearing strata and selected the optimum target horizons for salt cavern storage. By highlighting the identification of the log response characteristics of varying lithologies, this study established a mineral composition inversion model and extracted key parameters including ore-bearing coefficient, ore grade, interlayer distribution, and the properties of roof, floor, and cap rocks.Results The salt rocks showed typical log responses characterized by low gamma-ray (GR) values, low sonic interval transit time, low compensated neutron log (CNL) values, and high three lateral resistivity. In contrast, the mudstones showed log responses featuring high GR values, high CNL values, high sonic interval transit time, and low three lateral resistivity. Additionally, the transition rocks exhibited a continuously gradational trend in their petrophysical property parameters. Compared to curve overlapping and reconstruction methods, the GR-CNL cross plots significantly enhanced the lithological identification efficiency, achieving semi-quantitative identification of four lithologies. The interval at depths ranging from 906 m to 1 095 m exhibited an ore-bearing coefficient of 51.1%, an average NaCl grade of 69.46%, a predominance of 2‒4-m-thick mudstone interlayers, thick mudstone roof and floor, and tight salt rocks as cap rocks. Therefore, this interval was identified as the optimum target horizon for salt cavern storage.Conclusions Geophysical logging technique enables the quantitative characterization of the structural characteristics and mineral assemblages of salt-bearing strata, providing key geological parameters and a basis for scientific decision-making for the siting of salt cavern storage. This methodology proves universally applicable to salt-bearing basins with high tectonic stability and simple mineral assemblages. For areas with complex geological settings, it is necessary to conduct adaptive optimization using high-resolution logging techniques.

Keywords

salt cavern storage, logging, lithological identification, selection of optimum target horizon, Qingjiang Salt Mine

DOI

10.12363/issn.1001-1986.25.04.0258

Reference

[1] 施锡林,尉欣星,杨春和,等. 中国盐穴型战略石油储备库建设的问题及对策[J]. 中国科学院院刊,2023,38(1):99−111.

SHI Xilin,WEI Xinxing,YANG Chunhe,et al. Problems and countermeasures for construction of China’s salt cavern type strategic oil storage[J]. Bulletin of Chinese Academy of Sciences,2023,38(1):99−111.

[2] 王鹏,郑明阳. 杨春和:建设盐穴多能并储的格局[J]. 中国盐业,2021(19):8−9.

[3] 王洪浩,李江海,李维波,等. 盐穴的存储利用价值[J]. 科学,2014,66(1):42−45.

WANG Honghao,LI Jianghai,LI Weibo,et al. Discussion on the storage value of salt caverns[J]. Science,2014,66(1):42−45.

[4] 宋桂华,李国韬,温庆河,等. 世界盐穴应用历史回顾与展望[J]. 天然气工业,2004,24(9):116−118.

SONG Guihua,LI Guotao,WEN Qinghe,et al. Historical review and prospect of worldwide salt caves using[J]. Natural Gas Industry,2004,24(9):116−118.

[5] 宗师,刘世奇,徐辉,等. 苏北盆地层状盐穴储气库CO2封存数值模拟研究[J]. 煤田地质与勘探,2023,51(3):27−36.

ZONG Shi,LIU Shiqi,XU Hui,et al. Numerical simulation of CO2 storage in bedded salt rock storage cavern in Subei Basin[J]. Coal Geology & Exploration,2023,51(3):27−36.

[6] 任凭,齐磊,王玮,等. 盐穴空间利用现状及发展趋势[J]. 油气田地面工程,2023,42(5):1−8.

REN Ping,QI Lei,WANG Wei,et al. Current status and development trend of utilization of underground salt cavern space[J]. Oil–Gas Field Surface Engineering,2023,42(5):1−8.

[7] 郑雅丽,赵艳杰. 盐穴储气库国内外发展概况[J]. 油气储运,2010,29(9):652−655.

ZHENG Yali,ZHAO Yanjie. General situation of salt cavern gas storage worldwide[J]. Oil & Gas Storage and Transportation,2010,29(9):652−655.

[8] 冉莉娜,完颜祺琪,王立献,等. 国外盐穴地下储气库发展趋势及启示[J]. 盐科学与化工,2017,46(12):9−12.

RAN Lina,WANYAN Qiqi,WANG Lixian,et al. The developing trend of foreign salt cavern underground gas storage and enlightenments[J]. Journal of Salt Science and Chemical Industry,2017,46(12):9−12.

[9] 巴金红,康延鹏,姜海涛,等. 国内盐穴储气库老腔利用现状及展望[J]. 石油化工应用,2020,39(7):1−5.

BA Jinhong,KANG Yanpeng,JIANG Haitao,et al. Present situation and prospect of the utilization of old cavity in domestic salt cavern gas storage[J]. Petrochemical Industry Application,2020,39(7):1−5.

[10] 魏恒飞,方杰,时俊杰,等. 深部地下储存空间利用理论、技术及前景[J]. 煤田地质与勘探,2025,53(2):67−83.

WEI Hengfei,FANG Jie,SHI Junjie,et al. Theories,technologies,and prospects for the utilization of deep underground storage space[J]. Coal Geology & Exploration,2025,53(2):67−83.

[11] 井岗,何俊,陈加松,等. 淮安盐穴储油库潜力分析[J]. 油气储运,2017,36(8):875−882.

JING Gang,HE Jun,CHEN Jiasong,et al. Analysis on the potential of Huai’an salt–cavern oil storage[J]. Oil & Gas Storage and Transportation,2017,36(8):875−882.

[12] 周冬林,李建君,王晓刚,等. 云应地区采盐老腔再利用的可行性[J]. 油气储运,2017,36(8):930−936.

ZHOU Donglin,LI Jianjun,WANG Xiaogang,et al. Feasibility of the reuse of existing salt mining caverns in Yunying area[J]. Oil & Gas Storage and Transportation,2017,36(8):930−936.

[13] 陈波,沈雪明,完颜祺琪,等. 平顶山盐穴储气库建库地质条件评价[J]. 科技导报,2016,34(2):135−141.

CHEN Bo,SHEN Xueming,WANYAN Qiqi,et al. Geological condition evaluation for establishing gas storage in Pingdingshan salt cavern[J]. Science & Technology Review,2016,34(2):135−141.

[14] 王磊. 山东省岩盐矿区建造储气盐穴地质评价[J]. 化工矿产地质,2022,44(3):257−264.

WANG Lei. Evaluation on geological conditions of salt cave for gas storage in rock salt mining area of Shandong Province[J]. Geology of Chemical Minerals,2022,44(3):257−264.

[15] 曹烨,邱国玉,邹振东. 中国盐矿资源概况及其产业形势分析[J]. 无机盐工业,2018,50(3):1−5.

CAO Ye,QIU Guoyu,ZOU Zhendong. Analysis on salt mine resources and its industrial situation in China[J]. Inorganic Chemicals Industry,2018,50(3):1−5.

[16] 刘红樱,姜月华,杨国强,等. 长江经济带岩盐矿特征与盐穴储库适宜性评价[J]. 中国地质调查,2019,6(5):89−98.

LIU Hongying,JIANG Yuehua,YANG Guoqiang,et al. Characteristics of rock salt mines and suitability evaluation of salt cave storages in Yangtze River Economic Zone[J]. Geological Survey of China,2019,6(5):89−98.

[17] 孙军治,陈加松,井岗,等. 国内盐穴储气库建库关键技术研究进展[J]. 盐科学与化工,2022,51(10):1−7.

SUN Junzhi,CHEN Jiasong,JING Gang,et al. Research progress on key technologies of salt cavern gas storage construction in China[J]. Journal of Salt Science and Chemical Industry,2022,51(10):1−7.

[18] 郑雅丽,完颜祺琪,邱小松,等. 盐穴地下储气库选址与评价新技术[J]. 天然气工业,2019,39(6):123−130.

ZHENG Yali,WANYAN Qiqi,QIU Xiaosong,et al. New technologies for site selection and evaluation of salt–cavern underground gas storages[J]. Natural Gas Industry,2019,39(6):123−130.

[19] 丁国生,郑雅丽,李龙. 层状盐岩储气库造腔设计与控制[M]. 北京:石油工业出版社,2017.

[20] 井文君,杨春和,李银平,等. 基于层次分析法的盐穴储气库选址评价方法研究[J]. 岩土力学,2012,33(9):2683−2690.

JING Wenjun,YANG Chunhe,LI Yinping,et al. Research on site selection evaluation method of salt cavern gas storage with analytic hierarchy process[J]. Rock and Soil Mechanics,2012,33(9):2683−2690.

[21] 张敏,朱华银,武志德,等. 盐穴储气库不同类型盐岩溶蚀特性实验研究[J]. 盐科学与化工,2019,48(2):31−35.

ZHANG Min,ZHU Huayin,WU Zhide,et al. Experimental study on dissolution characteristics of different types of salt rock in salt cavern underground gas storage[J]. Journal of Salt Science and Chemical Industry,2019,48(2):31−35.

[22] 张敏,垢艳侠,朱华银,等. 复杂岩性盐穴储气库水溶特性及造腔对策[J]. 石油钻采工艺,2020,42(4):467−470.

ZHANG Min,GOU Yanxia,ZHU Huayin,et al. Water soluble performance and solution mining countermeasures of salt–cavern gas storages with complex lithologies[J]. Oil Drilling & Production Technology,2020,42(4):467−470.

[23] 石悦,郭文朋,徐宁,等. 采卤老腔改建盐穴储气库关键技术及应用[J]. 特种油气藏,2021,28(5):134−139.

SHI Yue,GUO Wenpeng,XU Ning,et al. Key technology and application of reconstruction of existing brine extraction caverns into salt cavern gas storage[J]. Special Oil & Gas Reservoirs,2021,28(5):134−139.

[24] 侯秉仁,宋鹤,牛耀辉,等. 超深盐穴储气库力学特性与稳定性分析[J]. 地下空间与工程学报,2024,20(Sup.2):646−653.

HOU Bingren,SONG He,NIU Yaohui,et al. Mechanical properties and stability analysis of ultra–deep salt cavern gas storage[J]. Chinese Journal of Underground Space and Engineering,2024,20(Sup.2):646−653.

[25] 张银行. 温度–NaCl溶液共同作用下盐岩力学损伤演化及裂纹扩展研究[D]. 淮南:安徽理工大学, 2024.

ZHANG Yinhang. Research on mechanical damage evolution and crack propagation of salt rock under the joint action of temperature and NaCl solution[D]. Huainan:Anhui University of Science and Technology, 2024.

[26] 刘伟,李银平,杨春和,等. 层状盐岩力学特性与储能安全评价[M]. 北京:冶金工业出版社,2024.

[27] 罗文煌,姚琪. 江西省清江岩盐矿床地质特征与成盐机理[J]. 东华理工学院学报,2006,29(增刊1):121−126.

LUO Wenhuang,YAO Qi. The geological characteristics Qingjiang halite deposit and its forming mechanism in Jiangxi Province[J]. Journal of East China Institute of Technology,2006,29(Sup.1):121−126.

[28] 汤凯,王春连,王九一. 清江盆地洋湖凹陷岩盐矿床A1孔泥岩段硼同位素组成特征研究[J]. 化工矿产地质,2019,41(2):111−116.

TANG Kai,WANG Chunlian,WANG Jiuyi. Boron isotope compositions study of mudstone in drill hole A1,Yanghu Depression,Qingjiang Basin[J]. Geology of Chemical Minerals,2019,41(2):111−116.

[29] 杨吉根. 江西清江盆地岩盐矿床泥质岩的分类及其特征分析[J]. 江西地质,1993,7(2):115−120.

YANG Jigen. The classification of argillite in the saline rock deposit in Qingjiang Basin,Jiangxi and its analysis of features[J]. Jiangxi Geology,1993,7(2):115−120.

[30] 杨吉根. 江西清江盆地岩盐矿床三种盐矿物中流体包裹体的初步研究[J]. 化工矿产地质,1995,17(1):47−54.

YANG Jigen. Preliminary study of fluid inclusions of three salinous minerals from halite deposit of Qingjiang Basin in Jiangxi[J]. Geology of Chemical Minerals,1995,17(1):47−54.

[31] 翟裕生,姚书振,蔡克勤. 矿床学(第3版)[M]. 北京:地质出版社,2011.

[32] 胡晓隆,张德权. 应用回归分析进行盐矿工业品位预报[J]. 物探与化探,2006,30(2):137−140.

HU Xiaolong,ZHANG Dequan. The application of regression analysis to salt mine grade prediction[J]. Geophysical and Geochemical Exploration,2006,30(2):137−140.

[33] 陈少泽,张媛,张华. 测井数据在固原硝口地区岩盐矿品位定量解释中的应用[J]. 中国煤炭地质,2022,34(7):67−70.

CHEN Shaoze,ZHANG Yuan,ZHANG Hua. Application of well logging data on halite ore grade quantitative interpretation in Xiaokou area,Guyuan[J]. Coal Geology of China,2022,34(7):67−70.

[34] 李锐敏,姜海涛,齐磊,等. 盐岩地层精细测井解释方法研究[J]. 石油化工应用,2022,41(1):100−103.

LI Ruimin,JIANG Haitao,QI Lei,et al. Research of salt formation logging interpretation method[J]. Petrochemical Industry Application,2022,41(1):100−103.

[35] 鲍世才,马彪. 地球物理测井在岩盐矿勘探中的应用[J]. 物探与化探,2013,37(3):449−452.

BAO Shicai,MA Biao. The application of geophysical well logging to the exploration of rock salt[J]. Geophysical and Geochemical Exploration,2013,37(3):449−452.

[36] 李静文,安国印,徐滨,等. 测井综合评价方法在盐穴储气库建库中的应用[J]. 国外测井技术,2021,42(2):60−63.

LI Jingwen,AN Guoyin,XU Bin,et al. Application of comprehensive logging evaluation method in construction of salt cavern gas storage[J]. World Well Logging Technology,2021,42(2):60−63.

[37] 李家启,王毅. 井矿盐测井及其解释方法[J]. 测井技术,1997,21(2):114−118.

LI Jiaqi,WANG Yi. Salt profile logging and its interpretation method[J]. Well Logging Technology,1997,21(2):114−118.

[38] 谢小国,罗兵,欧晓平,等. 可可西里古近系石盐测井评价方法研究[J]. 盐湖研究,2017,25(4):1−7.

XIE Xiaoguo,LUO Bing,OU Xiaoping,et al. Research on logging evaluation method of the Paleogene halite in Hoh Xil area[J]. Journal of Salt Lake Research,2017,25(4):1−7.

[39] 诸葛月英,罗安银,祗淑华,等. 盐穴储气库测井评价技术[C]//首届地下储库科技创新与智能发展国际会议论文集. 北京:石油工业出版社,2017:339–350.

[40] 完颜祺琪. 中国盐穴地下储气库建库地质条件评价及其对策研究[D]. 成都:西南石油大学,2015.

WANYAN Qiqi. Geological evaluation and countermeasure of the salt cavern of underground gas storage in China[D]. Chengdu:Southwest Petroleum University,2015.

[41] 江西省地质局九一五大队. 江西省清江盐矿北部块段(岩盐)地质勘探报告[R]. 1975.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.