•  
  •  
 

Coal Geology & Exploration

Abstract

Objective Conventional reconstruction methods are insufficient for the reconstruction of seismic data with missing consecutive traces, producing a negative impact on subsequent processing accuracy. Hence, this study proposed CU-Net++, a deep learning network based on the U-Net++ architecture combined with the convolutional block attention module (CBAM). Methods During the reconstruction of missing data, the independent decoder for each sub-U-Net in the nested U-Net++ architecture enables the utilization of information from different depths. The long and short skip connections can effectively enhance the network's capability to extract multi-scale features from data. The core innovation of CU-Net++ is the introduction of CBAM, which can enhance the capacity to learn about seismic wave details and edge information, into the U-Net++. This helps improve the network's ability to identify and capture complex seismic wave characteristics. Through the reconstruction tests of simulated and measured data, this study presented a comparative analysis of the reconstruction effects for missing seismic data of the CU-Net++, U-Net++, CU-Net, U-Net, and curvelet-domain projection onto convex sets (POCS) methods from the perspective of F-K spectrum, residual profile, single-trace waveform, mean absolute error (MAE), signal-to-noise ratio (SNR), and peak signal-to-noise ratio (PSNR).Results and Conclusions CU-Net++ delivered the optimum overall performance across various assessment metrics, yielding the lowest reconstruction error. Compared to U-Net++, it reduced the MAE by approximately 51% and improved the SNR and PSNR by 5.87 dB each. Notably, CU-Net++ enables high-precision construction of seismic data with a proportion of consecutively missing traces not exceeding 12%.

Keywords

seismic data reconstruction, deep learning, CU-Net++, nested architecture, multi-scale feature fusion, attention mechanism

DOI

10.12363/issn.1001-1986.25.01.0034

Reference

[1] GAO Jianjun,CHEN Xiaohong,LI Jingye,et al. Irregular seismic data reconstruction based on exponential threshold model of POCS method[J]. Applied Geophysics,2010,7(3):229−238.

[2] 贾永娜,吴杰,王国伟,等. 基于Gabor纹理学习的地震数据重建算法[J]. 石油地球物理勘探,2023,58(3):617−625.

JIA Yongna,WU Jie,WANG Guowei,et al. A texture feature learning method based on Gabor transform for seismic data interpolation[J]. Oil Geophysical Prospecting,2023,58(3):617−625.

[3] SPITZ S. Seismic trace interpolation in the F–X domain[J]. Geophysics,1991,56(6):785−794.

[4] CURRY W,SHAN Guojian. Interpolation of near offsets using multiples and prediction–error filters[J]. Geophysics,2010,75(6):WB153−WB164.

[5] LIU Guochang,LI Chao,GUO Zhifeng,et al. Irregularly sampled seismic data reconstruction using multiscale multidirectional adaptive prediction–error filter[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(5):2909−2919.

[6] FOMEL S. Seismic reflection data interpolation with differential offset and shot continuation[J]. Geophysics,2003,68(2):733−744.

[7] 辛可锋,王华忠,王成礼,等. 叠前地震数据的规则化[J]. 石油地球物理勘探,2002,37(4):311−317.

XIN Kefeng,WANG Huazhong,WANG Chengli,et al. Regularization of pre–stack seismic data[J]. Oil Geophysical Prospecting,2002,37(4):311−317.

[8] 周舟. 基于多道奇异谱分析方法的地震数据重建[D]. 北京:中国地质大学(北京),2014.

ZHOU Zhou. Seismic data reconstruction based on multichannel singular spectrum analysis method[D]. Beijing:China University of Geosciences (Beijing),2014.

[9] CADZOW J A. Signal enhancement:A composite property mapping algorithm[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing,1988,36(1):49−62.

[10] OROPEZA V,SACCHI M. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[J]. Geophysics,2011,76(3):V25−V32.

[11] ABMA R,KABIR N. 3D interpolation of irregular data with a POCS algorithm[J]. Geophysics,2006,71(6):E91−E97.

[12] 王敏玲,吴祺铭,王洪华,等. 基于区域阈值模型的地震信号凸集投影高效重建方法[J]. 石油地球物理勘探,2024,59(2):195−205.

WANG Minling,WU Qiming,WANG Honghua,et al. POCS high–efficient reconstruction method of seismic signals based on regional threshold model[J]. Oil Geophysical Prospecting,2024,59(2):195−205.

[13] 刘洋,SERGEY F,刘财,等. 高阶seislet变换及其在随机噪声消除中的应用[J]. 地球物理学报,2009,52(8):2142−2151.

LIU Yang,SERGEY F,LIU Cai,et al. High–order seislet transform and its application of random noise attenuation[J]. Chinese Journal of Geophysics,2009,52(8):2142−2151.

[14] CANDES E J,ROMBERG J K. Signal recovery from random projections[C]//Computational Imaging Ⅲ. San Jose:SPIE,2005:76.

[15] 刘国昌,陈小宏,郭志峰,等. 基于Curvelet变换的缺失地震数据插值方法[J]. 石油地球物理勘探,2011,46(2):237−246.

LIU Guochang,CHEN Xiaohong,GUO Zhifeng,et al. Missing seismic data rebuilding by interpolation based on Curvelet transform[J]. Oil Geophysical Prospecting,2011,46(2):237−246.

[16] 王汉闯,陶春辉,陈生昌,等. 基于稀疏约束的地震数据高效采集方法理论研究[J]. 地球物理学报,2016,59(11):4246−4265.

WANG Hanchuang,TAO Chunhui,CHEN Shengchang,et al. Study on highly efficient seismic data acquisition method and theory based on sparsity constraint[J]. Chinese Journal of Geophysics,2016,59(11):4246−4265.

[17] 温睿,刘国昌,冉扬. 压缩感知地震数据重建中的三个关键因素分析[J]. 石油地球物理勘探,2018,53(4):682−693.

WEN Rui,LIU Guochang,RAN Yang. Three key factors in seismic data reconstruction based on compressive sensing[J]. Oil Geophysical Prospecting,2018,53(4):682−693.

[18] WANG Yanfei,CAO Jingjie,YANG Changchun. Recovery of seismic wavefields based on compressive sensing by an l1–norm constrained trust region method and the piecewise random subsampling[J]. Geophysical Journal International,2011,187(1):199−213.

[19] 王本锋,陈小宏,李景叶,等. POCS联合改进的Jitter采样理论曲波域地震数据重建[J]. 石油地球物理勘探,2015,50(1):20−28.

WANG Benfeng,CHEN Xiaohong,LI Jingye,et al. Seismic data reconstruction based on POCS and improved Jittered sampling in the curvelet domain[J]. Oil Geophysical Prospecting,2015,50(1):20−28.

[20] 欧炳霖,曾同生,柳天成,等. 基于Huber–U–Net网络的地震数据重建与去噪[J]. 地球物理学进展,2023,38(6):2540−2552.

OU Binglin,ZENG Tongsheng,LIU Tiancheng,et al. Seismic data reconstruction and de–noising based on Huber–U–Net network[J]. Progress in Geophysics,2023,38(6):2540−2552.

[21] 徐凯军,卢炎,王大勇,等. 基于深度学习的大地电磁二维反演研究[J]. 石油地球物理勘探,2024,59(5):1174−1183.

XU Kaijun,LU Yan,WANG Dayong,et al. Two–dimensional magnetotelluric inversion based on deep learning[J]. Oil Geophysical Prospecting,2024,59(5):1174−1183.

[22] 马国庆,王泽坤,李丽丽. 基于自注意力机制深度学习的重磁数据网格化和滤波方法[J]. 石油地球物理勘探,2022,57(1):34−42.

MA Guoqing,WANG Zekun,LI Lili. Gridding and filtering method of gravity and magnetic data based on self–attention deep learning[J]. Oil Geophysical Prospecting,2022,57(1):34−42.

[23] 岳静楠,李志明. 基于卷积字典学习网络的地震数据重建[J]. 工程地球物理学报,2023,20(3):383−392.

YUE Jingnan,LI Zhiming. Seismic data reconstruction based on convolutional dictionary learning network[J]. Chinese Journal of Engineering Geophysics,2023,20(3):383−392.

[24] 曹静杰,高康富,许银坡,等. 基于一种注意力机制U–Net的地震数据去噪方法[J]. 石油地球物理勘探,2024,59(4):724−735.

CAO Jingjie,GAO Kangfu,XU Yinpo,et al. Seismic data de–noising method based on an attention mechanism U–Net[J]. Oil Geophysical Prospecting,2024,59(4):724−735.

[25] ZHU Huiyu,SUN Mengyao,FU Haohuan,et al. Training a seismogram discriminator based on ResNet[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(8):7076−7085.

[26] WANG Benfeng,ZHANG Ning,LU Wenkai,et al. Deep–learning–based seismic data interpolation:A preliminary result[J]. Geophysics,2019,84(1):V11−V20.

[27] ZHOU Zongwei,SIDDIQUEE M M R,TAJBAKHSH N,et al. UNet++:A nested U–Net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham:Springer,2018:3–11.

[28] 李卿武,王兴建,张永恒,等. 基于3D U–Net++卷积神经网络的断层识别方法及应用[J]. 物探化探计算技术,2024,46(3):284−291.

LI Qingwu,WANG Xingjian,ZHANG Yongheng,et al. Fault recognition method and application based on 3D U–Net++ convolution neural network[J]. Computing Techniques for Geophysical and Geochemical Exploration,2024,46(3):284−291.

[29] 李振轩,黄敏儿,高飞,等. 基于U–Net、U–Net++和Attention–U–Net网络的遥感影像水体提取[J]. 测绘通报,2024(8):26−30.

LI Zhenxuan,HUANG Miner,GAO Fei,et al. Remote sensing image water body extraction based on U–Net,U–Net++ and Attention–U–Net networks[J]. Bulletin of Surveying and Mapping,2024(8):26−30.

[30] HUANG He,WANG Tengfei,CHENG Jiubing,et al. Self–supervised deep learning to reconstruct seismic data with consecutively missing traces[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:5911514.

[31] JIN Xin,XIE Yanping,WEI Xiushen,et al. Delving deep into spatial pooling for squeeze–and–excitation networks[J]. Pattern Recognition,2022,121:108159.

[32] LI Haifeng,QIU Kaijian,CHEN Li,et al. SCAttNet:Semantic segmentation network with spatial and channel attention mechanism for high–resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters,2021,18(5):905−909.

[33] HUANG Guoheng,ZHU Junwen,LI Jiajian,et al. Channel–attention U–Net:Channel attention mechanism for semantic segmentation of esophagus and esophageal cancer[J]. IEEE Access,2020,8:122798−122810.

[34] WOO S,PARK J,LEE J Y,et al. CBAM:Convolutional block attention module[C]//Computer Vision–ECCV 2018. Cham:Springer,2018:3–19.

[35] 杨润湉,马强,王志宝,等. 基于多尺度注意力UNet++的地震层位识别方法[J]. 石油物探,2025,64(2):315−327.

YANG Runtian,MA Qiang,WANG Zhibao,et al. A seismic horizon identification method based on multi–scale attention UNet++[J]. Geophysical Prospecting for Petroleum,2025,64(2):315−327.

[36] SEN Yang,WANG Zhenmin,SONG Wenlong,et al. The segmentation method of road surface covering objects based on CBAM UNet++[J]. IEEE Transactions on Emerging Topics in Computational Intelligence,2025,9(2):1924−1933.

[37] WANG Junxin,ZHANG Qintong,XIE Hao,et al. Enhanced dual–channel model–based with improved UNet++ network for landslide monitoring and region extraction in remote sensing images[J]. Remote Sensing,2024,16(16):2990.

[38] 张永洪,席梦丹. 带洞型U–Net++网络在遥感影像中建筑物的提取方法[J]. 测绘地理信息,2021,46(增刊1):82−86.

ZHANG Yonghong,XI Mengdan. A method for extracting buildings from remote sensing images with hole U–Net++ network[J]. Journal of Geomatics,2021,46(Sup.1):82−86.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.