Coal Geology & Exploration
Abstract
Objective The Da’an area in Jilin Province, located in the southwestern Central Depression of the Songliao Basin, exhibits significant geothermal anomalies, which suggest substantial potential for geothermal exploitation. However, there remains a lack of detailed geothermal resource assessment of this area. Among conventional assessment methodologies, the volumetric method fails to accurately characterize irregular stratigraphic geometries and the spatial heterogeneity of parameters, while the Monte Carlo method suffers from limitations such as heavy dependence on the probability distribution models of geothermal reservoir parameters. Methods To overcome the limitations of the conventional methods, this study established a 3D geothermal geological model by integrating regional geology, drilling data, and the thermophysical properties of reservoir rocks. Through 3D simulations of steady-state geothermal fields, this study characterized the temperature field distributions at depths of less than 2 600 m in the eastern Da’an area. Then, using the finite volume method, it assessed geothermal resources in three major Upper Cretaceous geothermal reservoirs: the fourth member of the Nenjiang Formation (K2n4), the second-third members of the Yaojia Formation (K2y2+3), and the second-third members of the Qingshankou Formation (K2qn2+3). Results and Conclusions The results indicate that the formation temperatures at depths of 500 m, 1 000 m, 1 500 m, 2 000 m, and 2 500 m in the study area measure 25.8–36.4 ℃, 48.6–61.3 ℃, 63.1–84.6 ℃, 79.3–107.1 ℃, and 94.4–125.6 ℃, respectively. The geothermal contour lines are dense in the southwest and sparse in the northeast, with temperature distribution patterns roughly consistent across varying depths. In other words, the formation temperature is high in the northeast and low in the southwest. The geothermal reservoirs in K2n4, K2y2+3, and K2qn2+3 exhibit temperatures of 27.0–67.3 ℃, 38.2–96.7 ℃, and 43.2–103.58 ℃, respectively. Using the finite volume method, the geothermal resources in K2n4, K2y2+3, and K2qn2+3 were calculated via integration by units, yielding 19.2×1018 J, 30.4×1018 J, and 47.3×1018 J, respectively, which are equivalent to 6.55×108 tonnes of coal equivalent (tce), 10.37×108 tce, and 16.14×108 tce, respectively. Using 25% as the recovery factor, recoverable resources of K2n4, K2y2+3, and K2qn2+3 are estimated at 1.64×108 tce, 2.59×108 tce, and 4.04×108 tce, respectively. Compared to the traditional volume method and Monte Carlo method, the combination of the finite volume method and numerical simulation technique enjoys unique advantages in geothermal resource assessment.
Keywords
geothermal geological modeling, geothermal numerical simulation, geothermal resource assessment, finite volume method, eastern Da’an Area (Songliao Basin, NE China), Songliao Basin
DOI
10.12363/issn.1001-1986.25.04.0239
Recommended Citation
CHEN Wenwen, RAO Song, MENG Boyan,
et al.
(2025)
"Geothermal resource assessment of the eastern Da’an area based on 3D geothermal geological modeling,"
Coal Geology & Exploration: Vol. 53:
Iss.
9, Article 14.
DOI: 10.12363/issn.1001-1986.25.04.0239
Available at:
https://cge.researchcommons.org/journal/vol53/iss9/14
Reference
[1] 汪集暘. 地热学及其应用[M]. 北京:科学出版社,2015.
[2] 庞忠和,孔彦龙,庞菊梅,等. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊,2017,32(11):1224−1230.
PANG Zhonghe,KONG Yanlong,PANG Jumei,et al. Geothermal resources and development in Xiong’an New Area[J]. Bulletin of Chinese Academy of Sciences,2017,32(11):1224−1230.
[3] 汪集暘,孔彦龙,段忠丰,等. “双碳”目标下煤田区地热资源开发利用与储能技术[J]. 煤田地质与勘探,2023,51(2):1−11.
WANG Jiyang,KONG Yanlong,DUAN Zhongfeng,et al. Geothermal energy exploitation and storage in coal field under the dual carbon goal[J]. Coal Geology & Exploration,2023,51(2):1−11.
[4] 王社教,闫家泓,黎民,等. 油田地热资源评价研究新进展[J]. 地质科学,2014,49(3):771−780.
WANG Shejiao,YAN Jiahong,LI Min,et al. New advances in the study of oilfield geothermal resources evaluation[J]. Chinese Journal of Geology,2014,49(3):771−780.
[5] 汪集暘,邱楠生,胡圣标,等. 中国油田地热研究的进展和发展趋势[J]. 地学前缘,2017,24(3):1−12.
WANG Jiyang,QIU Nansheng,HU Shengbiao,et al. Advancement and developmental trend in the geothermics of oil fields in China[J]. Earth Science Frontiers,2017,24(3):1−12.
[6] 饶松,高腾,肖红平,等. 中国油区地热开发利用进展[J]. 科技导报,2022,40(20):65−75.
RAO Song,GAO Teng,XIAO Hongping,et al. Progress and prospective of geothermal exploitation and utilization in oil fields of China[J]. Science & Technology Review,2022,40(20):65−75.
[7] 李文靖,肖红平,饶松,等. 松辽盆地中央坳陷及邻区三维地热地质建模与地热资源靶区优选[J]. 地质科学,2024,59(1):235−248.
LI Wenjing,XIAO Hongping,RAO Song,et al. Three–dimensional geothermal geological modeling and geothermal target selection in the central depression and adjacent areas of the Songliao Basin[J]. Chinese Journal of Geology,2024,59(1):235−248.
[8] 张翘然,肖红平,饶松,等. 松辽盆地现今地温场特征及控制因素[J]. 地质科技通报,2023,42(5):191−204.
ZHANG Qiaoran,XIAO Hongping,RAO Song,et al. Characteristics and controlling factors of the present geothermal field in the Songliao Basin[J]. Bulletin of Geological Science and Technology,2023,42(5):191−204.
[9] 姜光政,高堋,饶松,等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892−2910.
JIANG Guangzheng,GAO Peng,RAO Song,et al. Compilation of heat flow data in the continental area of China (4th edition)[J]. Chinese Journal of Geophysics,2016,59(8):2892−2910.
[10] 何庆斌,张继红,李金凤. 松辽盆地大安油田葡萄花油层特低渗储层成岩相特征与孔隙演化[J]. 大庆石油地质与开发,2023,42(2):1−12.
HE Qingbin,ZHANG Jihong,LI Jinfeng. Diagenetic facies and porosity evolution of ultra–low permeability reservoir in Putaohua reservoir in Da’an Oilfield in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2023,42(2):1−12.
[11] 邓守伟,范晶,王颖. 松辽盆地南部中浅层石油地质条件、资源潜力及勘探方向[J]. 海相油气地质,2019,24(2):33−42.
DENG Shouwei,FAN Jing,WANG Ying. The geological conditions,resource potential,and exploration direction of oil of middle–shallow layers in the southern Songliao Basin[J]. Marine Origin Petroleum Geology,2019,24(2):33−42.
[12] 何怡香,丁朋朋,刘韶华,等. 基于蒙特卡罗及博弈赋权法的地热资源潜力与适宜性评估[J]. 煤田地质与勘探,2025,53(5):176−187.
HE Yixiang,DING Pengpeng,LIU Shaohua,et al. Assessing the potential and suitability of geothermal resources using Monte Carlo simulation and game–based combination weighting method[J]. Coal Geology & Exploration,2025,53(5):176−187.
[13] 汪永华,蔚远江,吴珍珍,等. 基于ArcGIS空间图形插值法的致密气资源评价:以俄罗斯蒂曼–伯朝拉盆地为例[J]. 地球科学与环境学报,2023,45(5):1246−1256.
WANG Yonghua,YU Yuanjiang,WU Zhenzhen,et al. Tight gas resource evaluation based on ArcGIS spatial graph interpolation method:A case study of Timan–Pechora Basin in Russia[J]. Journal of Earth Sciences and Environment,2023,45(5):1246−1256.
[14] 杨涛涛,王霞,侯福斗,等. 蒙特卡罗法及其在油气储量评估中的应用[J]. 地球物理学进展,2021,36(5):2109−2118.
YANG Taotao,WANG Xia,HOU Fudou,et al. Monte Carlo method and its application in oil and gas reserve assessment[J]. Progress in Geophysics,2021,36(5):2109−2118.
[15] 王社教,李峰,闫家泓,等. 油田地热资源评价方法及应用[J]. 石油学报,2020,41(5):553−564.
WANG Shejiao,LI Feng,YAN Jiahong,et al. Evaluation methods and application of geothermal resources in oilfields[J]. Acta Petrolei Sinica,2020,41(5):553−564.
[16] DOUCET A,FREITAS N,GORDON N. Sequential Monte Carlo methods in practice[M]. New York:Springer New York,2001.
[17] 张源,万志军,胡淞博,等. 矿井岩溶热储三维地质建模及地热资源潜力评价[J]. 煤炭学报,2024,49(8):3571−3579.
ZHANG Yuan,WAN Zhijun,HU Songbo,et al. 3D geological modeling of mine karst geothermal reservoir and geothermal resources evaluation[J]. Journal of China Coal Society,2024,49(8):3571−3579.
[18] BROWN C S. Regional geothermal resource assessment of hot dry rocks in Northern England using 3D geological and thermal models[J]. Geothermics,2022,105:102503.
[19] CALCAGNO P,BAUJARD C,GUILLOU–FROTTIER L,et al. Estimation of the deep geothermal potential within the Tertiary Limagne Basin (French Massif Central):An integrated 3D geological and thermal approach[J]. Geothermics,2014,51:496−508.
[20] 赵杰,郭清海. 基于三维地质建模的地热资源潜力评价:以施甸地热区为例[J]. 地球科学,2023,48(3):1107−1117.
ZHAO Jie,GUO Qinghai. Geothermal resources evaluation based on 3D geological modeling:The case of Shidian geothermal area[J]. Earth Science,2023,48(3):1107−1117.
[21] 魏虹羽,李世超,王伟安. 地球动力学数值模拟算法的应用现状与展望[J]. 吉林大学学报(地球科学版),2025,55(1):98−124.
WEI Hongyu,LI Shichao,WANG Weian. Current status and future prospects of numerical simulation algorithms in geodynamics[J]. Journal of Jilin University (Earth Science Edition),2025,55(1):98−124.
[22] 盖长城,李洪达,任路,等. 地热数值模拟与油藏数值模拟方法对比分析[J]. 油气藏评价与开发,2024,14(6):849−856.
GAI Changcheng,LI Hongda,REN Lu,et al. Comparative analysis of geothermal and reservoir numerical simulation methods[J]. Petroleum Reservoir Evaluation and Development,2024,14(6):849−856.
[23] 王宁,汤井田,任政勇,等. 基于有限体积法的二维大地电磁各向异性数值模拟[J]. 地球物理学报,2019,62(10):3912−3922.
WANG Ning,TANG Jingtian,REN Zhengyong,et al. Two–dimensional magnetotelluric anisotropic forward modeling using finite–volume method[J]. Chinese Journal of Geophysics,2019,62(10):3912−3922.
[24] ZENG Yan,ZHANG Ying. Deep bedrock geothermal resources in the Maichen Sag,Beibuwan Basin and their potential for exploitation and utilization[J]. Energy Geoscience,2023,4(4):100223.
[25] MUFFLER P,CATALDI R. Methods for regional assessment of geothermal resources[J]. Geothermics,1978,7(2/3/4):53−89.
[26] 王伟,申小龙,王少锋,等. 松辽盆地西部斜坡区换热井钻完井工艺实践[J]. 陕西煤炭,2024,43(6):96−100.
WANG Wei,SHEN Xiaolong,WANG Shaofeng,et al. Practice of drilling and completion technology of heat exchange well in western slope area of Songliao Basin[J]. Shaanxi Coal,2024,43(6):96−100.
[27] 胡望水,吕炳全,张文军,等. 松辽盆地构造演化及成盆动力学探讨[J]. 地质科学,2005,40(1):16−31.
HU Wangshui,LYU Bingquan,ZHANG Wenjun,et al. An approach to tectonic evolution and dynamics of the Songliao Basin[J]. Chinese Journal of Geology,2005,40(1):16−31.
[28] 牛璞,韩江涛,曾昭发,等. 松辽盆地北部地热场深部控制因素研究:基于大地电磁探测的结果[J]. 地球物理学报,2021,64(11):4060−4074.
NIU Pu,HAN Jiangtao,ZENG Zhaofa,et al. Deep controlling factors of the geothermal field in the northern Songliao Basin derived from magnetotelluric survey[J]. Chinese Journal of Geophysics,2021,64(11):4060−4074.
[29] 刘雨晨,柳波,朱焕来,等. 松辽盆地现今地温场分布特征及主控因素[J]. 地质学报,2023,97(8):2715−2727.
LIU Yuchen,LIU Bo,ZHU Huanlai,et al. The distribution characteristics and main controlling factors of present–day geothermal regime of the Songliao Basin[J]. Acta Geologica Sinica,2023,97(8):2715−2727.
[30] 陈春瑞,李晶,王峥,等. 松辽盆地北部地热资源分布特征及开发对策[J]. 大庆石油地质与开发,2024,43(4):215−222.
CHEN Chunrui,LI Jing,WANG Zheng,et al. Distribution characteristics and development strategy of geothermal resources in northern Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2024,43(4):215−222.
[31] 刘晨璞,钟鑫,朱焕来. 松辽盆地北部中低地温场形成机制探讨[J]. 地质调查与研究,2016,39(4):316−320.
LIU Chenpu,ZHONG Xin,ZHU Huanlai. Research on the formation mechanism for the medium–low geothermal field in the north of Songliao Basin[J]. Geological Survey and Research,2016,39(4):316−320.
[32] SHI Yizuo,JIANG Guangzheng,ZHANG Xinyong,et al. Present temperature field characterization and geothermal resource assessment in the Harbin Area,northeast China[J]. Energy Exploration & Exploitation,2019,37(2):834−848.
[33] SHI Yizuo,JIANG Guangzheng,SHI Shangming,et al. Terrestrial heat flow and its geodynamic implications in the northern Songliao Basin,northeast China[J]. Geophysical Journal International,2022,229(2):962−983.
[34] 杨成. 大安沿江地区黑帝庙油层沉积特征及成藏模式研究[D]. 大庆:东北石油大学,2012.
YANG Cheng. Study on sedimentary characteristic and reservoiring pattern in Heidimiao oil layer in Da’an area along the river[D]. Daqing:Northeast Petroleum University,2012.
[35] 蔡来星,卢双舫,肖国林,等. 论优质源储耦合关系的控藏作用:对比松南致密油与松北致密气成藏条件[J]. 吉林大学学报(地球科学版),2018,48(1):15−28.
CAI Laixing,LU Shuangfang,XIAO Guolin,et al. Controlling action of space–time coupling relationship between high–quality source rocks and high–quality reservoirs:Contrasting accumulation conditions of tight oil in the southern Songliao Basin with tight gas in the northern Songliao Basin[J]. Journal of Jilin University (Earth Science Edition),2018,48(1):15−28.
[36] 李野. 松辽盆地EGS地热资源评价及勘察开发选区初步研究[D]. 长春:吉林大学,2017.
LI Ye. Preliminary study on EGS geothermal resources evaluation and exploration in Songliao Basin[D]. Changchun:Jilin University,2017.
[37] 鲍新华,张宇,李野,等. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版),2017,47(2):564−572.
BAO Xinhua,ZHANG Yu,LI Ye,et al. Evaluation of development selection for enhanced geothermal system in Songliao Basin[J]. Journal of Jilin University (Earth Science Edition),2017,47(2):564−572.
[38] 沈安江,康伟力,王艳清,等. 松辽盆地南部白垩纪层序地层与岩性地层油气藏勘探[M]. 北京:石油工业出版社,2006.
[39] 汪在君. 松辽盆地北部的地热资源及其开发利用方向[J]. 自然资源学报,2003,18(1):8−12.
WANG Zaijun. The geothermal resource of the northern Songliao Basin and direction for its development and utilization[J]. Journal of Natural Resources,2003,18(1):8−12.
[40] 翟志伟,施尚明,朱焕来. 大庆长垣西部地区地热资源潜力分布[J]. 科学技术与工程,2011,11(4):834−837.
ZHAI Zhiwei,SHI Shangming,ZHU Huanlai. Potential distribution of geothermal resource in western region of Daqing placanticline[J]. Science Technology and Engineering,2011,11(4):834−837.
[41] 郑佳荣,李青元,曹代勇. 地矿建模中常用插值方法插值效果分析[J]. 有色金属(矿山部分),2012,64(1):69−72.
ZHENG Jiarong,LI Qingyuan,CAO Daiyong. Analysis on interpolation methods used in geological modeling[J]. Nonferrous Metals (Mining Section),2012,64(1):69−72.
[42] 李海涛,邵泽东. 空间插值分析算法综述[J]. 计算机系统应用,2019,28(7):1−8.
LI Haitao,SHAO Zedong. Review of spatial interpolation analysis algorithm[J]. Computer Systems & Applications,2019,28(7):1−8.
[43] 郭甲腾,吴立新,周文辉. 基于径向基函数曲面的矿体隐式自动三维建模方法[J]. 煤炭学报,2016,41(8):2130−2135.
GUO Jiateng,WU Lixin,ZHOU Wenhui. Automatic ore body implicit 3D modeling based on radial basis function surface[J]. Journal of China Coal Society,2016,41(8):2130−2135.
[44] 赵勇,许国,卢鹏,等. 基于GemPy的隐式三维地质建模方法[J]. 人民长江,2023,54(10):98−104.
ZHAO Yong,XU Guo,LU Peng,et al. Implicit 3D geological modeling approach based on GemPy[J]. Yangtze River,2023,54(10):98−104.
[45] 廖舟,李梅. 基于开源GemPy的城市地下空间三维隐式势场建模方法研究[J]. 地学前缘,2024,31(3):482−497.
LIAO Zhou,LI Mei. Research on the 3D implicit potential field modeling method for urban underground space based on the open–source GemPy[J]. Earth Science Frontiers,2024,31(3):482−497.
[46] 郭福钟,郑博文,祁生文,等. 三维地质建模技术与方法综述[J]. 工程地质学报,2024,32(3):1143−1153.
GUO Fuzhong,ZHENG Bowen,QI Shengwen,et al. A review of 3D geological modeling technology and methods[J]. Journal of Engineering Geology,2024,32(3):1143−1153.
[47] CALCAGNO P,CHILÈS J P,COURRIOUX G,et al. Geological modelling from field data and geological knowledge:Part I. Modelling method coupling 3D potential–field interpolation and geological rules[J]. Physics of the Earth and Planetary Interiors,2008,171(1/2/3/4):147−157.
[48] CHILES J P,AUG C,GUILLEN A,et al. Modelling the geometry of geological units and its uncertainty in 3D from structural data:The potential–field method[C]//AusIMM. Orebody modelling and strategic mine planning–uncertainty and risk management models. Carlton:Australasian Institute of Mining and Metallurgy,2006:329–336.
[49] 施亦做,王社教,肖红平,等. 基于三维地质建模的松辽盆地北部地温场模拟[J]. 天然气工业,2022,42(4):46−53.
SHI Yizuo,WANG Shejiao,XIAO Hongping,et al. 3D GeoModeller–based simulation of the geothermal field in the northern Songliao Basin[J]. Natural Gas Industry,2022,42(4):46−53.
[50] 李志安. 松辽盆地地幔热流的演化特征[J]. 大地构造与成矿学,1995,19(2):104−112.
LI Zhian. Evolutionary features of mantle heat flux in Songliao Basin[J]. Geotectonica et Metallogenia,1995,19(2):104−112.
[51] STÜWE K. Geodynamics of the lithosphere[M]. New York:Springer Verlag,2007.
[52] LACHENBRUCH A H,SASS J H. Heat flow in the United States and the thermal regime of the crust[M]//HEACOCK G,KELLER G V,OLIVER J E,et al. The Earth’s crust. Washington:American Geophysical Union,1977:626–675.
[53] CHEN Lin,BERNTSSON F,ZHANG Zhongjie,et al. Seismically constrained thermo–rheological structure of the eastern Tibetan margin:Implication for lithospheric delamination[J]. Tectonophysics,2014,627:122−134.
[54] SEIKEL R,STÜWE K,GIBSON H,et al. Forward prediction of spatial temperature variation from 3D geology models[J]. ASEG Extended Abstracts,2009,2009(1):1−9.
[55] QIU Nansheng,ZUO Yinhui,XU Wei,et al. Meso–Cenozoic lithosphere thinning in the eastern North China Craton:Evidence from thermal history of the Bohai Bay Basin,North China[J]. The Journal of Geology,2016,124(2):195−219.
[56] 邱楠生,胡圣标,何丽娟. 沉积盆地地热学[M]. 东营:中国石油大学出版社,2019.
[57] 王一波,刘绍文,陈超强,等. 中国陆域大地热流数据汇编(第五版)[J]. 地球物理学报,2024,67(11):4233−4265.
WANG Yibo,LIU Shaowen,CHEN Chaoqiang,et al. Compilation of terrestrial heat flow data in continental China (5th edition)[J]. Chinese Journal of Geophysics,2024,67(11):4233−4265.
[58] BASSAM A,SANTOYO E,ANDAVERDE J,et al. Estimation of static formation temperatures in geothermal wells by using an artificial neural network approach[J]. Computers & Geosciences,2010,36(9):1191−1199.
[59] 唐博宁,邱楠生,朱传庆,等. 松辽盆地岩石热导率柱及古地温场分布特征[J]. 煤田地质与勘探,2024,52(1):26−35.
TANG Boning,QIU Nansheng,ZHU Chuanqing,et al. Thermal conductivity column of rocks and distribution characteristics of paleo–geothermal field in the Songliao Basin[J]. Coal Geology & Exploration,2024,52(1):26−35.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons