•  
  •  
 

Coal Geology & Exploration

Authors

LIAN Huiqing, Hebei Key Laboratory of Mine Disaster Prevention and Control, North China Institute of Science and Technology, Beijing 101601, China; Hebei Technology Innovation Center for Intelligent Emergency Response to Multi-Scenario Water Disaster Chain Accidents, North China Institute of Science and Technology, Beijing 101601, ChinaFollow
WANG Xu, Hebei Key Laboratory of Mine Disaster Prevention and Control, North China Institute of Science and Technology, Beijing 101601, China; Hebei Technology Innovation Center for Intelligent Emergency Response to Multi-Scenario Water Disaster Chain Accidents, North China Institute of Science and Technology, Beijing 101601, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, ChinaFollow
YIN Shangxian, Hebei Key Laboratory of Mine Disaster Prevention and Control, North China Institute of Science and Technology, Beijing 101601, China; Hebei Technology Innovation Center for Intelligent Emergency Response to Multi-Scenario Water Disaster Chain Accidents, North China Institute of Science and Technology, Beijing 101601, China
XIA Xiangxue, Hebei Key Laboratory of Mine Disaster Prevention and Control, North China Institute of Science and Technology, Beijing 101601, China
CAO Min, Hebei Key Laboratory of Mine Disaster Prevention and Control, North China Institute of Science and Technology, Beijing 101601, China; Hebei Technology Innovation Center for Intelligent Emergency Response to Multi-Scenario Water Disaster Chain Accidents, North China Institute of Science and Technology, Beijing 101601, China
LI Qixing, Huangyuchuan Coal Mine, National Energy Yili Energy Co., Ltd., Ordos 435112, China
WU Xiaoming, Huajin Coking Coal Co., Ltd. Shaqu No.1 Mine, Ordos 033399, China
ZHANG Bin, Liyazhuang Coal Mine, Houzhou Coal Electricity Group, Co., Ltd., Houzhou 031400, China
WANG Yangyu, Hebei Key Laboratory of Mine Disaster Prevention and Control, North China Institute of Science and Technology, Beijing 101601, China
ZHANG Qing, Hebei Key Laboratory of Mine Disaster Prevention and Control, North China Institute of Science and Technology, Beijing 101601, China
WANG Guo’an, Hebei Key Laboratory of Mine Disaster Prevention and Control, North China Institute of Science and Technology, Beijing 101601, China

Abstract

Background To systematically normalize the reconnaissance of hidden disaster-causing factors in coal mines, the National Mine Safety Administration issued the Specification for General Survey of Hidden Disaster-causing Factors in Mine in 2024. Nevertheless, coal mining enterprises still face a range of notable issues in reconnaissance of hidden disaster-causing factors, including ambiguous connotations of the factors, broad scopes of reconnaissance, unclear implementation stages, a disjunction between explorations and reconnaissance, and improper conclusion descriptions. These problems severely restrict scientific and operational reconnaissance.Methods This study reviews the history of research on the reconnaissance of hidden disaster-causing factors, presents a summary of significant technical achievements across various development stages, and analyzes existing issues, especially critical technical and scientific issues. Furthermore, this study proposes future c in the industry, as well as primary technical and theoretical orientations to address the challenges.Advances This study holds that hidden disaster-causing factors consist merely of geologic and mining factors, which can be further categorized into five major types: coal seam storage conditions, geobodies, geological structures, mining, and others. Regarding general-survey implementation stages, this study proposes that the traditional survey mode with three years as a cycle should be replaced by a progressive approach, which comprises regional exploration before shaft construction, supplementary exploration before coal mining, detailed survey prior to panel design, integrated exploration and treatment before mining, and dynamic supplementary survey during mining. This approach emphasizes the dynamic evolution of the reconnaissance and treatment of hidden disaster-causing factors, enabling the dynamic coordination between mining engineering and disaster prevention and control. This study recommends that it is necessary to establish a data assessment mechanism for hidden disaster-causing factors, i.e., directly citing verified factors, partially verifying questionable factors, and comprehensively exploring unknown factors. This helps achieve efficient coordination between explorations and reconnaissance while avoiding redundant efforts. Moreover, this study proposes a standardized reconnaissance process comprising general provisions, data analysis, field exploration, risk assessment, and conclusions and suggestions.Prospects In China, complex geological structures underscore the critical role of exploring hidden disaster-causing factors in coal mining. With scientific advancements and the demand for transparency and intelligent mining of coal mines, it is necessary to develop a region-mine-coal seam assessment system for hidden disaster-causing factors and to promote the dynamic coordination between mining operations and disaster prevention and control. This helps provide a geological guarantee for safe coal mining and a scientific guide for reconnaissance of hidden disaster-causing factors in coal mines, holding great significance for enhancing the disaster prevention and control capability of coal mines.

Keywords

coal mine, hidden disaster-causing factor, factor classification, challenge in reconnaissance, dynamic exploration, reconnaissance, research advance

DOI

10.12363/issn.1001-1986.25.04.0241

Reference

[1] 尹尚先,王玉国,李文生. 矿井水灾害:原因·对策·出路[J]. 煤田地质与勘探,2023,51(1):214−221.

YIN Shangxian,WANG Yuguo,LI Wensheng. Cause,countermeasures and solutions of water hazards in coal mines in China[J]. Coal Geology & Exploration,2023,51(1):214−221.

[2] 尹尚先,徐斌,尹慧超,等. 矿井水防治学科基本架构及内涵[J]. 煤炭科学技术,2023,51(7):24−35.

YIN Shangxian,XU Bin,YIN Huichao,et al. Basic structure and connotation of mine water prevention and control discipline[J]. Coal Science and Technology,2023,51(7):24−35.

[3] 卢新明,阚淑婷. 煤炭精准开采地质保障与透明地质云计算技术[J]. 煤炭学报,2019,44(8):2296−2305.

LU Xinming,KAN Shuting. Geological guarantee and transparent geological cloud computing technology of precision coal mining[J]. Journal of China Coal Society,2019,44(8):2296−2305.

[4] 王家臣,刘峰,王蕾. 煤炭科学开采与开采科学[J]. 煤炭学报,2016,41(11):2651−2660.

WANG Jiachen,LIU Feng,WANG Lei. Sustainable coal mining and mining sciences[J]. Journal of China Coal Society,2016,41(11):2651−2660.

[5] 许艳之. 基于组合赋权三维云的煤矿顶板事故隐蔽致灾因素风险分析[D]. 焦作:河南理工大学,2023.

XU Yanzhi. Risk analysis of hidden disaster–causing factors in coal mine roof accidents based on combined weighted three–dimensional cloud[D]. Jiaozuo:Henan Polytechnic University,2023.

[6] 方俊. 煤矿井下隐蔽致灾因素定向钻孔探查技术研究[D]. 西安:西安科技大学,2019.

FANG Jun. Exploration technology of hidden disaster causing factors by underground directional drilling in coal mine[D]. Xi’an:Xi’an University of Science and Technology,2019.

[7] 王锐. 韩城矿区隐蔽致灾地质因素的辨识与致灾危险度评价[D]. 西安:西安科技大学,2020.

WANG Rui. Identification and risk assessment of hidden disaster–causing geological factors in Hancheng mining area[D]. Xi’an:Xi’an University of Science and Technology,2020.

[8] 袁智,蒋庆友,庞振忠. 我国煤矿智能化综采开采技术装备应用现状与发展思考[J]. 煤炭科学技术,2024,52(9):189−198.

YUAN Zhi,JIANG Qingyou,PANG Zhenzhong. Application status and development thinking of intelligent mining technology and equipment in coal mines in China[J]. Coal Science and Technology,2024,52(9):189−198.

[9] 霍雨佳. 河北省煤矿主要隐蔽致灾因素分布规律及成因机制分析[D]. 邯郸:河北工程大学,2019.

HUO Yujia. Analysis on distribution rule and cause mechanism of main hidden disaster causing factors in coal mines in Hebei Province[D]. Handan:Hebei University of Engineering,2019.

[10] 汤煜. 煤矿隐蔽致灾水源巷–孔瞬变电磁超前探查响应特征正演模拟研究[D]. 徐州:中国矿业大学,2022.

TANG Yu. Forward modeling study on response characteristics of advanced exploration of hidden disaster water source lane–hole transient electromagnetic in coal mine[D]. Xuzhou:China University of Mining and Technology,2022.

[11] 曾一凡,朱慧聪,武强,等. 我国不同类别煤层顶板水害致灾机理与防控路径[J]. 煤炭学报,2024,49(3):1539−1555.

ZENG Yifan,ZHU Huicong,WU Qiang,et al. Disaster–causing mechanism and prevention and control path of different types of coal seam roof water disasters in China[J]. Journal of China Coal Society,2024,49(3):1539−1555.

[12] 武强,朱慧聪,胡辰睿,等. 我国煤层水害基本架构及发展情势[J]. 煤炭工程,2024,56(10):12−21.

WU Qiang,ZHU Huicong,HU Chenrui,et al. The basic structure and development situation of coal seam water disaster in China[J]. Coal Engineering,2024,56(10):12−21.

[13] 吴金随,张辞源,尹尚先,等. 近20 a我国煤矿水害事故统计及分析[J]. 煤炭技术,2022,41(6):86−89.

WU Jinsui,ZHANG Ciyuan,YIN Shangxian,et al. Statistics and analysis of coal mine water damage accidents in China in recent 20 years[J]. Coal Technology,2022,41(6):86−89.

[14] 安监总局发布《煤炭地质工作规定》[J]. 煤田地质与勘探,2014,42(1):56.

[15] 李适时. 中华人民共和国安全生产法释义[M]. 北京:中国物价出版社,2002.

[16] 杜运夯,孙小林,陈小国. 《煤矿防治水细则专家解读》[M]. 徐州:中国矿业大学出版社,2018.

[17] 国家安全生产监督管理总局信息研究院. 煤矿防治水规定[M]. 北京:煤炭工业出版社,2009.

[18] 中国法制出版社. 煤矿安全规程[M]. 北京:中国法制出版社,2016.

[19] 丁莹莹,卜昌森,连会青,等. 基于仿真平台的矿井突水淹没路径和逃生路径规划[J]. 煤矿安全,2023,54(5):20−26.

DING Yingying,BU Changsen,LIAN Huiqing,et al. Mine water inrush path and escape path planning based on simulation platform[J]. Safety in Coal Mines,2023,54(5):20−26.

[20] 连会青,晏涛,尹尚先,等. 基于透明水文地质模型的工作面顶板水害预警研究[J]. 煤炭科学技术,2025,53(1):259−271.

LIAN Huiqing,YAN Tao,YIN Shangxian,et al. Research on early warning of roof water inrush in working faces based on a transparent hydrogeological model[J]. Coal Science and Technology,2025,53(1):259−271.

[21] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295.

CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.

[22] 袁鹏. 瞬变电磁探测技术在煤矿岩溶富水区勘探中的应用研究[J]. 科学技术创新,2025(10):18−21.

YUAN Peng. Application research of transient electromagnetic prospecting technology in coal mine karst water–rich areas[J]. Scientific and Technological Innovation,2025(10):18−21.

[23] 段建华,许超. 地面物探技术在煤矿隐蔽致灾地质因素探测中的应用[J]. 中国煤炭地质,2015,27(10):53−57.

DUAN Jianhua,XU Chao. Application of surface geophysical prospecting in coalmine hidden hazard factor detection[J]. Coal Geology of China,2015,27(10):53−57.

[24] 魏铁军. 美国矿业法的演进[J]. 中国矿业,2005,14(4):14−16.

WEI Tiejun. The evolution of American mining laws[J]. China Mining Magazine,2005,14(4):14−16.

[25] 许立民. 日本煤矿安全生产工作的经验和启示[J]. 中国煤炭,2007,33(2):68−70.

[26] 蔡忠. 南非煤矿安全生产概况[J]. 劳动保护,2010(4):110−111.

[27] 认真贯彻执行《煤矿地质工作细则》积极开展隐蔽致灾因素普查 有效预防煤矿事故[N]. 中国煤炭报,2024-01-25(3).

[28] 杨起,韩德馨. 中国煤田地质学[M]. 北京:煤炭工业出版社,1979.

[29] 李四光. 地质力学概论[M]. 北京:科学出版社,1973.

[30] 曹代勇,琚宜文,夏玉成,等. 中国煤田构造研究的史实概览、主要进展与前景展望[J]. 煤田地质与勘探,2025,53(5):1−23.

CAO Daiyong,JU Yiwen,XIA Yucheng,et al. Historical overview,advancements,and future prospects of coalfield structure research in China[J]. Coal Geology & Exploration,2025,53(5):1−23.

[31] 任予鑫,康向南,马昆,等. 瞬变电磁法在矿井水探查中的应用[J]. 现代矿业,2022,38(2):237−241.

REN Yuxin,KANG Xiangnan,MA Kun,et al. Application of transient electromagnetic method in mine water exploration[J]. Modern Mining,2022,38(2):237−241.

[32] 冯玉,刘建平,付成祥. 综合勘探技术在探测地质异常体中的应用[J]. 中国煤田地质,2004,16(增刊1):84−86.

FENG Yu,LIU Jianping,FU Chengxiang. Application of integrated exploration technique in geologic anomalous body prospecting[J]. Coal Geology of China,2004,16(Sup.1):84−86.

[33] 卢国梁,侯志鹰. 地质构造综合探测技术在塔山矿的应用[J]. 煤炭科学技术,2008,36(9):95−98.

LU Guoliang,HOU Zhiying. Comprehensive detection technology of geological tectonics applied to Tashan mine[J]. Coal Science and Technology,2008,36(9):95−98.

[34] 孙文斌,李长江,王宇,等. 基于瞬变电磁法的煤矿隐蔽致灾水害分析研究[J]. 煤炭技术,2023,42(10):167−169.

SUN Wenbin,LI Changjiang,WANG Yu,et al. Analysis and research of hidden disaster water damage in coal mine based on transient electromagnetic method[J]. Coal Technology,2023,42(10):167−169.

[35] XU Xianlei,PENG Suping,YANG Feng. Development of a ground penetrating radar system for large–depth disaster detection in coal mine[J]. Journal of Applied Geophysics,2018,158:41−47.

[36] DU Junsheng,CHEN Jie,PU Yuanyuan,et al. Risk assessment of dynamic disasters in deep coal mines based on multi–source,multi–parameter indexes,and engineering application[J]. Process Safety and Environmental Protection,2021,155:575−586.

[37] ZHAO Yifan,TIAN Shuicheng. Identification of hidden disaster causing factors in coal mine based on Naive Bayes algorithm[J]. Journal of Intelligent & Fuzzy Systems,2021,41(2):2823−2831.

[38] 王勃,申思洪任,蔚立元,等. 基于VMD和GA–SVM的矿井地震自适应噪声压制方法[J]. 煤炭学报,2024,49(3):1530−1538.

WANG Bo,SHEN Sihongren,YU Liyuan,et al. Mine seismic adaptive noise suppression method based on VMD and GA–SVM[J]. Journal of China Coal Society,2024,49(3):1530−1538.

[39] 史伟鹏,张平松,孙斌杨,等. 基于DOFS的矿山隐蔽致灾多因素智能感知现状与分析[J/OL]. 煤炭科学技术,2025:1–22 [2025-04-22]. https://link.cnki.net/urlid/11.2402.td.20250422.1047.002.

SHI Weipeng,ZHANG Pingsong,SUN Binyang,et al. Status and analysis of multi–factor intelligent perception of hidden disaster in mines based on DOFS[J/OL]. Coal Science and Technology,2025:1–22 [2025-04-22]. https://link.cnki.net/urlid/11.2402.td.20250422.1047.002.

[40] 杜兰宝. 煤矿隐蔽致灾因素可视化在矿井灾害治理中的应用[J]. 陕西煤炭,2024,43(7):132−137.

Du Lanbao. Application of visualization of hidden disaster factors in coal mine disaster management[J]. Shaanxi Coal,2024,43(7):132−137.

[41] 王海军,郑三龙,王相业,等. 地质构造隐蔽致灾因素透明化勘查技术:以新疆屯宝煤矿为例[J]. 煤炭科学技术,2024,52(9):173−188.

WANG Haijun,ZHENG Sanlong,WANG Xiangye,et al. Transparent exploration technology for hidden disaster–causing factors of geological structure:Taking Tunbao coal mine in Xinjiang as an example[J]. Coal Science and Technology,2024,52(9):173−188.

[42] 王嘉伟,王海军,吴汉宁,等. 基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究[J]. 工矿自动化,2024,50(3):71−81.

WANG Jiawei,WANG Haijun,WU Hanning,et al. Research on transparency of hidden disaster causing factors in coal mines based on 3D geological modeling technology[J]. Journal of Mine Automation,2024,50(3):71−81.

[43] 毛善君,崔建军,令狐建设,等. 透明化矿山管控平台的设计与关键技术[J]. 煤炭学报,2018,43(12):3539−3548.

MAO Shanjun,CUI Jianjun,LINGHU Jianshe,et al. System design and key technology of transparent mine management and control platform[J]. Journal of China Coal Society,2018,43(12):3539−3548.

[44] 王岩,寇浩楠,张旭辉,等. 数字孪生驱动的智能掘进设备虚实交互控制方法[J]. 中国矿业大学学报,2025,54(2):330−342.

WANG Yan,KOU Haonan,ZHANG Xuhui,et al. Virtual–physical interaction control method for intelligent cantilever roadheader driven by digital twin[J]. Journal of China University of Mining & Technology,2025,54(2):330−342.

[45] 国家安全生产监督管理总局信息研究院. 煤矿隐蔽致灾因素与探查[M]. 北京:煤炭工业出版社,2014.

[46] 范立民. 煤矿隐蔽致灾因素及探查技术[C]//陕西省煤炭学会学术年会论文集(2014). 西安:陕西省煤炭学会,2015.

[47] 黄炳香,韩晓克,赵兴龙,等. 采动岩层多相多场耦合运动数字孪生方法构想[J]. 中国矿业大学学报,2024,53(6):1037−1052.

HUANG Bingxiang,HAN Xiaoke,ZHAO Xinglong,et al. Research framework of digital twin construction method for mining induced strata movement under multiphase and multifield coupling[J]. Journal of China University of Mining & Technology,2024,53(6):1037−1052.

[48] 袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725.

YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725.

[49] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345.

PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.