•  
  •  
 

Coal Geology & Exploration

Abstract

Objective In the field of mine accident rescue, creating vertical rescue channels through surface drilling operations using a rescue vehicle-mounted drilling rig (RVMDR) proves the most effective. However, the limitation of the vehicle’s load capacity necessitates balancing the driving speeds and stability of the round-trip actuating mechanisms. Furthermore, establishing an optimization design and configuration system of parameters to maximize the operational capacities of these actuating mechanisms plays a key role in ensuring rescue efficiency. Methods By establishing a multiple spatiotemporal planning model for the round-trip actuating mechanisms of the RVMDR, this study determined the value ranges and design processes of the RVMDR’s critical parameters. Following the classification and planning principles of trapezoidal or S-shaped velocity curves of multiple actuating mechanisms, this study performed the temporal and kinematic planning of these actuating mechanisms. A directional, coupled mechanical-hydraulic dynamics model was developed using the Adams and AMESim platforms. Accordingly, the dynamic characteristics of the mechanical and hydraulic drive systems were analyzed, and the parameter configuration of the drive systems and the dynamic design parameters of the RVMDR's major mechanisms were optimized. Furthermore, this study proposed a design method for global timeliness optimization that integrated timing coordination, motion control, and drive synchronization, forming a complete design closed loop for the parameters of the RVMDR's round-trip actuating mechanisms. Results and Conclusions The results indicate that the parallel operation configuration strategy reduced the tripping-in and tripping-out times by 17.7% and 17.5%, respectively. The maximum stresses of various actuating mechanisms were concentrated at hinge points. Vibration and load impact peaked at the time of motion state transition. The dynamic iterative optimization of the parallel-action sequences of the actuating mechanisms reduced the maximum stress by 37.76% when the feed cylinder lifted the power head and by 4.66% when the tilt cylinder retracted to cause the power head to drop. The action sequence tests of round-trip actuating mechanisms using the RVMDR prototype indicate that the errors between the actual and planned action times were ≤ 5.83%, with vibration amplitude remaining within prescribed constraints. Overall, the design method for the timeliness optimization of RVMDR proposed in this study is significant for enhancing the capacity and efficiency of borehole rescue equipment.

Keywords

rescue vehicle-mounted drilling rig (RVMDR), multi-mechanism synergy, kinematic planning, mechanical-hydraulic dynamics, parameter matching, round-trip actuating mechanism, timeliness optimization

DOI

10.12363/issn.1001-1986.24.07.0470

Reference

[1] 张彪,康玉国,黄勇,等. 矿山救援地面生命保障孔高效成孔关键技术[J]. 煤田地质与勘探,2022,50(11):14−23.

ZHANG Biao,KANG Yuguo,HUANG Yong,et al. Key technologies of surface efficient life support hole forming for mine rescue[J]. Coal Geology & Exploration,2022,50(11):14−23.

[2] 王一臻. ZMK5530TZJ60型钻机车的研制与应用[J]. 机械管理开发,2019,34(3):14−15.

WANG Yizhen. Development and application of ZMK5530TZJ60 drilling locomotive[J]. Mechanical Management and Development,2019,34(3):14−15.

[3] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.

YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.

[4] 周汝福. “Π”型钢放顶煤抽采瓦斯与自然发火综合防治技术[J]. 科技信息,2008(26):317

[5] 凡东,常江华,王贺剑,等. ZMK5530TZJ100型车载钻机的研制[J]. 煤炭科学技术,2017,45(3):111−115.

FAN Dong,CHANG Jianghua,WANG Hejian,et al. Research and development on ZMK5530TZJ100 mode truck–mounted drilling rig[J]. Coal Science and Technology,2017,45(3):111−115.

[6] 陈卫明,王家文,凡东,等. 矿山救援钻孔中井涌井漏事故预警预测[J]. 煤田地质与勘探,2024,52(3):144−152.

CHEN Weiming,WANG Jiawen,FAN Dong,et al. Early warning and prediction of kicks and lost circulation accident during rescue drilling of mine[J]. Coal Geology & Exploration,2024,52(3):144−152.

[7] 董泽训. 山东笏山矿难3号救援钻孔施工技术[J]. 钻探工程,2021,48(10):104−109.

DONG Zexun. Construction technology of No. 3 rescue borehole in Hushan mine disaster,Shandong Province[J]. Drilling Engineering,2021,48(10):104−109.

[8] 田宏亮,张阳,郝世俊,等. 矿山灾害应急救援通道快速安全构建技术与装备[J]. 煤炭科学技术,2019,47(5):29−33.

TIAN Hongliang,ZHANG Yang,HAO Shijun,et al. Technology and equipment for rapid safety construction of emergency rescue channel after mine disaster[J]. Coal Science and Technology,2019,47(5):29−33.

[9] 杨涛,杜兵建. 山东平邑石膏矿矿难大口径救援钻孔施工技术[J]. 探矿工程(岩土钻掘工程),2017,44(5):19−23.

YANG Tao,DU Bingjian. Construction technology of large diameter rescue borehole in Pingyi gypsum mine disaster of Shandong[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2017,44(5):19−23.

[10] 高加索. 煤层气钻机的性能探析和发展方向[J]. 石油机械,2010,38(6):84–87

[11] 凡东,邹祖杰,王瑞泽,等. 地面救援车载钻机的研制[J]. 煤田地质与勘探,2022,50(11):35−44.

FAN Dong,ZOU Zujie,WANG Ruize,et al. Development of rescue truck–mounted drilling rig in ground emergency[J]. Coal Geology & Exploration,2022,50(11):35−44.

[12] 徐俏武,张小新. 液压动力猫道钻杆减阻控制优化研究[J]. 制造业自动化,2021,43(11):144−147.

XU Qiaowu,ZHANG Xiaoxin. Optimization of hydraulic power catwalk drill pipe drag reduction control system[J]. Manufacturing Automation,2021,43(11):144−147.

[13] 郝晓锐. 矿用钻机煤层钻孔钻进参数监测系统开发及应用研究[D]. 徐州:中国矿业大学,2022.

HAO Xiaorui. Development and testing of mining drilling rig coal seam drilling parameter monitoring system[D]. Xuzhou:China University of Mining and Technology,2022.

[14] 常江华. 全液压车载钻机回转系统设计[J]. 煤矿安全,2018,49(2):115−117.

CHANG Jianghua. Design of rotary system for all hydraulic truck–mounted drilling rig[J]. Safety in Coal Mines,2018,49(2):115−117.

[15] 赵江鹏,刘建林,赵建国. 矿山大口径钻孔循环钻进技术研究[J]. 金属矿山,2018(1):147−151.

ZHAO Jiangpeng,LIU Jianlin,ZHAO Jianguo. Research on reverse circulation drilling technology for large–diameter mine drilling hole[J]. Metal Mine,2018(1):147−151.

[16] 武程亮,滕子军,赵后明,等. 矿山钻探应急救援中生命通道的钻井技术:以山东栖霞笏山金矿事故救援 1 号孔为例[J]. 钻探工程,2021,48(增刊1):206−210.

WU Chengliang,TENG Zijun,ZHAO Houming,et al. Drilling technology for the lifeline channel in mine emergency rescue:A case study of the accident rescue of the Hushan Gold Mine in Qixia City,Shandong Province[J]. Drilling Engineering,2021,48(Sup.1):206−210.

[17] 杨三军,朱新菲,谭波. 基于云模型的矿山应急救援队伍能力评估标准研究[J]. 煤矿安全,2021,52(11):250−255.

YANG Sanjun,ZHU Xinfei,TAN Bo. Evaluation standard of mine emergency rescue force capability based on cloud model[J]. Safety in Coal Mines,2021,52(11):250−255.

[18] 周兢. 矿山灾害应急救援生命保障孔钻井工艺研究[J]. 钻探工程,2022,49(1):128−134.

ZHOU Jing. Research on drilling technology for mine disaster rescue life support holes[J]. Drilling Engineering,2022,49(1):128−134.

[19] 郝世俊,莫海涛. 地面大直径应急救援钻孔成孔工艺设计与分析[J]. 煤田地质与勘探,2021,49(1):277−284.

HAO Shijun,MO Haitao. Design and analysis of hole–forming technology for surface large diameter emergency rescue borehole[J]. Coal Geology & Exploration,2021,49(1):277−284.

[20] 李泉新,石智军,田宏亮,等. 我国煤矿区钻探技术装备研究进展[J]. 煤田地质与勘探,2019,47(2):1−6.

LI Quanxin,SHI Zhijun,TIAN Hongliang,et al. Progress in the research on drilling technology and equipment in coal mining areas of China[J]. Coal Geology & Exploration,2019,47(2):1−6.

[21] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1−8.

LI Gensheng,SONG Xianzhi,TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques,2020,48(1):1−8.

[22] 周正. 动力头钻机夹持拧卸系统设计与优化研究[D]. 北京:中国地质大学(北京),2019.

ZHOU Zheng. Study on the design and optimization of power head drilling rig clamping system[D]. Beijing:China University of Geosciences (Beijing),2019.

[23] 常江华. 复杂工况车载钻机电液系统动态特性及控制方法研究[D]. 北京:煤炭科学研究总院,2019.

CHANG Jianghua. Dynamic characteristics and control method of electro–hydraulic system of truck–mounted drilling rig on complex operating conditions[D]. Beijing:China Coal Research Institute,2019.

[24] 凡东. 150T煤层气车载钻机给进装置研究及液压驱动系统设计[D]. 西安:长安大学,2017.

FAN Dong. Research on feeding device and design of driving system for 150T CBM drilling rig[D]. Xi’an:Chang’an University,2017.

[25] 张子胜. ZYT5550TZJ120型钻机车的研制[D]. 北京:中国石油大学,2008.

ZHANG Zisheng. ZYT5550TZJ120 mobile rig design and fabrication[D]. Beijing:China University of Petroleum,2008.

[26] 张阳. 钻机车机电液一体化系统性能优化关键技术研究[D]. 北京:煤炭科学研究总院,2020.

ZHANG Yang. Key technology research on mechanical–electrical–hydraulic integrated system optimization of truck–mounted drilling rig[D]. Beijing:China Coal Research Institute,2020.

[27] 谢武装. 潜孔钻机行走驱动系统参数匹配研究[D]. 长沙:中南大学,2009

[28] 褚帅. 履带式起重机功率匹配及仿真分析[D]. 沈阳:东北大学,2013.

CHU Shuai. Crawler crane power matching and simulation analysis[D]. Shenyang:Northeastern University,2013.

[29] 黄中一. 装载机作业负载与功率匹配研究[D]. 柳州:广西科技大学,2020.

HUANG Zhongyi. Research on load and power matching of loader[D]. Liuzhou:Guangxi University of Science and Technology,2020.

[30] 林荣川. 液压缸的约束方式与稳定性研究[J]. 机电技术,2006,29(3):31–33

[31] 明仁雄. 重载液压缸液压冲击值计算[J]. 港口装卸,1996(1):18–21

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.