•  
  •  
 

Coal Geology & Exploration

Abstract

Objective The Carboniferous and Permian coal-bearing strata in the southern Wuxiang block, Qinshui Basin, Shanxi Province, China contain abundant coalbed methane (CBM) resources. To develop intelligent discrimination technology for CBM exploration in this block, it is necessary to establish lithology discrimination criteria based on log data, reveal the response relationships between logging and sedimentary facies, and determine sedimentary patterns. Methods Using a comprehensive analysis of lithologies, sedimentary facies, and logging facies, this study systematically investigated the distributions of logging and sedimentary facies in the Shanxi and Taiyuan formations—the primary coal-bearing strata in the southern Wuxiang block. By comprehensively analyzing the core and log data, this study proposed a quantitative lithology identification method based on multivariate log data. Furthermore, this study established a lithology identification model using three-dimensional cross plots and determined the sedimentary patterns of the block by combining log curve morphologies and lithologic assemblage characteristics. Results and Conclusions The identification model, which correlated lithologies, sedimentary facies, and logging facies, was constructed in this study. Using this model, 12 common lithologies in the primary coal-bearing strata in the southern Wuxiang block were divided into four categories. The log curves of the Shanxi Formation predominantly exhibited four morphologies, i.e., box, bell, finger, and funnel shapes, while those of the Taiyuan Formation exhibit four typical lithologic morphologic combinations, i.e., sawtooth, box + sawtooth, box + bell, and bell + finger combinations. The sedimentary characteristics of the primary coal-bearing strata in the southern Wuxiang block were determined based on the compositions and distributions of sedimentary facies and microfacies. Specifically, the Shanxi Formation exhibits a deltaic plain sedimentary system, which consists primarily of three sedimentary microfacies: distributary channels, interdistributary bays, and peat swamps. In contrast, the Taiyuan Formation is dominated by deposited marine carbonate platforms, with principal sedimentary microfacies including neritic facies, barrier islands, lagoons, and tidal flats. The tidal flat facies can be further divided into sand, peat, and mixed flats. Finally, the sedimentary patterns and sedimentary sequence types of the Shanxi and Taiyuan formations in the southern Wuxiang block were established, providing a basis for determining the CBM resource endowment in the block.

Keywords

coal-bearing strata, coalbed methane (CBM), lithology, logging facies, sedimentary facies, intelligent identification

DOI

10.12363/issn.1001-1986.25.01.0027

Reference

[1] 徐凤银,肖芝华,陈东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215.

XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205−215.

[2] 黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.

HUANG Zhongwei,LI Guofu,YANG Ruiyue,et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.

[3] 吴裕根,门相勇,娄钰. 我国“十四五”煤层气勘探开发新进展与前景展望[J]. 中国石油勘探,2024,29(1):1−13.

WU Yugen,MEN Xiangyong,LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five–Year Plan period[J]. China Petroleum Exploration,2024,29(1):1−13.

[4] 邵龙义,刘红梅,田宝霖,等. 上扬子地区晚二叠世沉积演化及聚煤[J]. 沉积学报,1998,16(2):55−60.

SHAO Longyi,LIU Hongmei,TIAN Baolin,et al. Sedimentary evolution and its controls on coal accumulation for the Late Permian in the Upper Yangtze area[J]. Acta Sedimentologica Sinica,1998,16(2):55−60.

[5] 桑树勋,李壮富,范炳恒,等. 层序地层格架与煤岩层对比:层序地层学在山西阳曲煤田普查勘探中的应用[J]. 沉积学报,2001,19(4):556−562.

SANG Shuxun,LI Zhuangfu,FAN Bingheng,et al. Sequence stratigraphic framework and correlation of coal and rock seams:Sequence stratigraphy applied to coal exploration in Yangqu,Shanxi[J]. Acta Sedimentologica Sinica,2001,19(4):556−562.

[6] 牛永斌,朱信生,胡斌,等. 太原西山二叠系山西组沉积微相及其演化规律[J]. 河南理工大学学报(自然科学版),2015,34(4):483−490.

NIU Yongbin,ZHU Xinsheng,HU Bin,et al. Sedimentary microfacies and sedimentary evolution of Shanxi Formation in Xishan area,Taiyuan[J]. Journal of Henan Polytechnic University (Natural Science),2015,34(4):483−490.

[7] 张璐,林玉祥,于剑峰,等. 沁水盆地郑庄区块山西组的沉积特征[J]. 海洋地质前沿,2012,28(10):40−45.

ZHANG Lu,LIN Yuxiang,YU Jianfeng,et al. Depositional characteristics of Shanxi Formation in Zhengzhuang block of Qinshui Basin[J]. Marine Geology Frontiers,2012,28(10):40−45.

[8] 康希栋. 沁水煤田町店勘探区太原组K2–K4灰岩段沉积环境[J]. 华北地质矿产杂志,1994,9(3):293−297.

KANG Xidong. Sedimentary environment of K2–K4 limestone member of Taiyuan Formation in southeast Qinshui Coalfield,Shanxi[J]. Journal Geol & Min Research North China,1994,9(3):293−297.

[9] 陈世悦,刘焕杰. 含煤建造露头层序地层分析:以太原西山石炭二叠系剖面为例[J]. 煤田地质与勘探,1995,23(2):13−17.

CHEN Shiyue,LIU Huanjie. Sequence stratigraphic analysis of coal–bearing formation outcrop:Based on Carboniferous–Permian profile,Xishan,Taiyuan[J]. Coal Geology & Exploration,1995,23(2):13−17.

[10] 徐振永,王延斌,陈德元,等. 沁水盆地晚古生代煤系层序地层及岩相古地理研究[J]. 煤田地质与勘探,2007,35(4):5−7.

XU Zhenyong,WANG Yanbin,CHEN Deyuan,et al. Sequence stratigraphy & lithofacies Palaeogeography in Qinshui Basin[J]. Coal Geology & Exploration,2007,35(4):5−7.

[11] 贾建称. 沁水盆地晚古生代含煤沉积体系及其控气作用[J]. 地球科学与环境学报,2007,29(4):374−382.

JIA Jiancheng. Coal depositional system and its controlling role of coalbed methane in Late Paleozonic of Qinshui Basin[J]. Journal of Earth Sciences and Environment,2007,29(4):374−382.

[12] 邵龙义,肖正辉,何志平,等. 晋东南沁水盆地石炭二叠纪含煤岩系古地理及聚煤作用研究[J]. 古地理学报,2006,8(1):43−52.

SHAO Longyi,XIAO Zhenghui,HE Zhiping,et al. Palaeogeography and coal accumulation for coal measures of the Carboniferous–Permian in Qinshui Basin,southeastern Shanxi Province[J]. Journal of Palaeogeography,2006,8(1):43−52.

[13] 邵龙义,肖正辉,汪浩,等. 沁水盆地石炭–二叠纪含煤岩系高分辨率层序地层及聚煤模式[J]. 地质科学,2008,43(4):777−791.

SHAO Longyi,XIAO Zhenghui,WANG Hao,et al. Permo–Carboniferous coal measures in the Qinshui Basin:High–resolution sequence stratigraphy and coal accumulating models[J]. Chinese Journal of Geology,2008,43(4):777−791.

[14] 胡斌,杨连超,胡磊,等. 山西陵川地区上石炭统–下二叠统太原组15#煤层成煤环境分析[J]. 中国煤炭地质,2013,25(2):4−11.

HU Bin,YANG Lianchao,HU Lei,et al. Analysis of Upper Carboniferous–Lower Permian Taiyuan Formation coal seam No. 15 coal–forming environment in Lingchuan area,Shanxi[J]. Coal Geology of China,2013,25(2):4−11.

[15] 王保玉,胡斌,白建平,等. 山西沁水盆地东南部上石炭统–下二叠统太原组聚煤环境[J]. 古地理学报,2015,17(5):677−688.

WANG Baoyu,HU Bin,BAI Jianping,et al. Coal–accumulating environments of the Upper Carboniferous–Lower Permian Taiyuan Formation in southeastern Qinshui Basin,Shanxi Province[J]. Journal of Palaeogeography,2015,17(5):677−688.

[16] 宋慧波,王芳,胡斌. 晋中南地区上石炭统–下二叠统太原组碳酸盐岩中遗迹组构及其沉积环境[J]. 沉积学报,2015,33(6):1126−1139.

SONG Huibo,WANG Fang,HU Bin. Ichnofabrics and their sedimentary environments in carbonate rocks of the Upper Carboniferous–Lower Permian Taiyuan Formation in middle south Shanxi Province[J]. Acta Sedimentologica Sinica,2015,33(6):1126−1139.

[17] 宋慧波,李亚南,于振峰,等. 山西沁水盆地东北部太原组沉积序列及环境演化[J]. 古地理学报,2018,20(4):623−636.

SONG Huibo,LI Yanan,YU Zhenfeng,et al. Sedimentary succession and environment evolution of the Taiyuan Formation in northeastern Qinshui Basin,Shanxi Province[J]. Journal of Palaeogeography (Chinese Edition),2018,20(4):623−636.

[18] 宋慧波,安红亮,刘顺喜,等. 沁水盆地武乡南煤层气赋存主控地质因素及富集区预测[J]. 煤炭学报,2021,46(12):3974−3987.

SONG Huibo,AN Hongliang,LIU Shunxi,et al. Controlling geological factors and coalbed methane enrichment areas in southern Wuxiang block,Qinshui Basin[J]. Journal of China Coal Society,2021,46(12):3974−3987.

[19] 陈国旭,阮寅芝,李蕊蕊,等. 基于测井数据的沁水盆地南部古地理沉积环境恢复与特征分析[J]. 地理与地理信息科学,2023,39(1):8−14.

CHEN Guoxu,RUAN Yinzhi,LI Ruirui,et al. Restoration and characteristic analysis of paleogeographic sedimentary environment in southern Qinshui Basin based on logging data[J]. Geography and Geo–Information Science,2023,39(1):8−14.

[20] 康世龙,吕玉民,王存武,等. 沉积环境对煤层含气量的控制:以沁水盆地寿阳地区太原组15#煤为例[J]. 古地理学报,2024,26(2):416−430.

KANG Shilong,LYU Yumin,WANG Cunwu,et al. Control of sedimentary environments on gas contents of coal seams:A case study of No. 15 coals bed of the Taiyuan Formation in Shouyang area,Qinshui Basin[J]. Journal of Palaeogeography (Chinese Edition),2024,26(2):416−430.

[21] 毛振强,夏宇,高刚,等. 博兴洼陷沙三下段湖相沉积岩性特征及识别[J]. 西安石油大学学报(自然科学版),2020,35(5):14−23.

MAO Zhenqiang,XIA Yu,GAO Gang,et al. Characteristics and identification of lacustrine sedimentary lithology in Lower Es3 strata of Boxing subsag[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2020,35(5):14−23.

[22] 高春云,周立发,路萍. 测井曲线标准化研究进展综述[J]. 地球物理学进展,2020,35(5):1777−1783.

GAO Chunyun,ZHOU Lifa,LU Ping. Review of the development of well log normalization[J]. Progress in Geophysics,2020,35(5):1777−1783.

[23] 尚亚洲,张兆辉,许多年,等. 基于随机森林的火山岩岩性测井识别:以准噶尔盆地滴西地区石炭系为例[J]. 物探与化探,2024,48(4):1025−1036.

SHANG Yazhou,ZHANG Zhaohui,XU Duonian,et al. Log–based lithology identification of volcanic rocks using random forest method:A case study of Carboniferous strata in the Dixi area,Junggar Basin[J]. Geophysical and Geochemical Exploration,2024,48(4):1025−1036.

[24] 尚亚洲,许多年,张兆辉,等. 基于PCA–BP神经网络的TOC测井评价方法研究[J]. 测井技术,2024,48(4):438−452.

SHANG Yazhou,XU Duonian,ZHANG Zhaohui,et al. Research on TOC log evaluation method based on PCA–BP neural network[J]. Well Logging Technology,2024,48(4):438−452.

[25] 裴家学,郭晗,周立国,等. 基于多复合测井参数的复杂岩性核主元识别方法:以开鲁盆地陆西凹陷九佛堂组储层为例[J]. 大庆石油地质与开发,2025,44(2):136−146.

PEI Jiaxue,GUO Han,ZHOU Liguo,et al. Kernel principal component identification method for complex lithology based on multi–composite logging parameters:A case study of reservoirs in Jiufotang Formation of Luxi Sag in Kailu Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2025,44(2):136−146.

[26] SERRA O. Sedimentary environments from wireline logs[M]. Houston:Schlumberger Limited,1985.

[27] 杨雨,钟原. 四川盆地北部地区飞仙关组测井相特征[J]. 天然气勘探与开发,2020,43(4):1−9.

YANG Yu,ZHONG Yuan. Logging facies characteristics of Feixianguan Formation,northern Sichuan Basin[J]. Natural Gas Exploration and Development,2020,43(4):1−9.

[28] FENG Qingfu,XIAO Yuxiang,HOU Xiulin,et al. Logging identification method of depositional facies in Sinian Dengying Formation of the Sichuan Basin[J]. Petroleum Science,2021,18(4):1086−1096.

[29] LIU Bo,CHANG Suoliang,ZHANG Sheng,et al. Seismic–geological integrated study on sedimentary evolution and peat accumulation regularity of the Shanxi Formation in Xinjing mining area,Qinshui Basin[J]. Energies,2022,15(5):1851.

[30] 朱现胜. 三角洲体系沉积微相的测井识别方法与应用[J]. 断块油气田,2007,14(5):91−92.

ZHU Xiansheng. Logging recognition method on sedimentary microfacies of delta system and its application[J]. Fault–Block Oil & Gas Field,2007,14(5):91−92.

[31] 黄晶晶,孙粉锦,王勃,等. 沁水盆地南部石炭–二叠系层序地层划分与聚煤作用[J]. 中国煤层气,2015,12(2):17−22.

HUANG Jingjing,SUN Fenjin,WANG Bo,et al. Permo–Carboniferous sequence stratigraphy and coal accumulation in south Qinshui Basin[J]. China Coalbed Methane,2015,12(2):17−22.

[32] 高向东,王延斌,韩文龙,等. 沁南柿庄地区含煤岩系沉积微相展布特征及演化模式[J]. 桂林理工大学学报,2017,37(1):29−36.

GAO Xiangdong,WANG Yanbin,HAN Wenlong,et al. Distribution characteristics and sedimentary model of sedimental micro–facies of coal bearing strata in Shizhuang area,southern Qinshui Basin[J]. Journal of Guilin University of Technology,2017,37(1):29−36.

[33] 赖锦,苏洋,肖承文,等. 地球物理测井在地质领域应用经典案例解析[J]. 地质科技通报,2024,43(5):279−288.

LAI Jin,SU Yang,XIAO Chengwen,et al. Analysis of typical applications of geophysical well logs in geological fields[J]. Bulletin of Geological Science and Technology,2024,43(5):279−288.

[34] 冯增昭. 沉积相的一些术语定义的新思考:基于迈尔(Miall,1985)的文章[J]. 古地理学报,2022,24(2):183−190.

FENG Zengzhao. Some new thoughts on definitions of terms of sedimentary facies:Based on Miall’s paper (1985)[J]. Journal of Palaeogeography (Chinese Edition),2022,24(2):183−190.

[35] 李军,王贵文. 一种分析砂岩沉积相的新方法:测井相分析[J]. 地质论评,1996,42(5):443−447.

LI Jun,WANG Guiwen. A new method for analyzing sandstone facies:Logging facies analysis[J]. Geological Review,1996,42(5):443−447.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.