•  
  •  
 

Coal Geology & Exploration

Abstract

Objective To address the bottlenecks of low computational efficiency and impracticality of multi-dimensional inversion in the advance geological prediction based on the transient electromagnetic method (TEM), this study developed a pseudo-two-dimensional (2D) magnetotelluric (MT) inversion technique for small-frame TEM based on time-frequency transformation. Methods First, this study corroborated the significant similarity between the late-time apparent resistivity derived using small-frame TEM and the Cagniard apparent resistivity in the MT method under the parameters commonly used in advance geological prediction. Then, the optimal time-frequency transformation coefficient (CTF) was introduced to achieve a rapid conversion from the late-time apparent resistivity to the Cagniard apparent resistivity. The maximum average conversion deviation was determined at 3.7%, suggesting generally small deviations. Last, a mature MT inversion method was employed to process the converted data.Results In the pseudo-1D MT inversion results, the maximum relative resistivity and depth errors were determined at 6.14% and 5.73%, respectively, suggesting generally small inversion errors. In the pseudo-2D MT inversion results, the inversion results derived from survey lines above the water-bearing structure reflected the boundary locations and actual depth of the water-bearing structure, and the inverted resistivity approximated to the actual resistivity of the water-bearing structure. In contrast, the inversion results obtained using survey lines outside the water-bearing structure can reflect the presence of the low-resistivity water-bearing structure. However, certain deviations were observed between the specific inversion parameters and their actual values. Conclusions This method takes less than 20 minutes to calculate on a common PC, which improves the calculation efficiency and prediction accuracy, and provides a new practical 2D inversion approach for TEM advanced geological prediction.

Keywords

transient electromagnetic method (TEM), small-frame source, magnetotellurics (MT), advance geological prediction, 2D inversion, time-frequency transformation, Cagniard apparent resistivity

DOI

10.12363/issn.1001-1986.24.11.0686

Reference

[1] 张继锋,孙乃泉,刘最亮,等. 电磁法在煤矿水害隐患探测方面的综述[J]. 煤田地质与勘探,2023,51(2):301−316.

ZHANG Jifeng,SUN Naiquan,LIU Zuiliang,et al. Electromagnetic methods in the detection of water hazards in coal mines:A review[J]. Coal Geology & Exploration,2023,51(2):301−316.

[2] 曾一凡,武强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1−14.

ZENG Yifan,WU Qiang,ZHAO Suqi,et al. Characteristics,causes,and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology,2023,51(7):1−14.

[3] 孙文洁,李文杰,宁殿艳,等. 我国煤矿水害事故现状、预测及防治建议[J]. 煤田地质与勘探,2023,51(12):185−194.

SUN Wenjie,LI Wenjie,NING Dianyan,et al. Current states,prediction and prevention suggestions for water hazard accidents in China’s coal mines[J]. Coal Geology & Exploration,2023,51(12):185−194.

[4] 葛颜慧,李术才,张庆松,等. 基于风险评价的岩溶隧道综合超前地质预报技术研究[J]. 岩土工程学报,2010,32(7):1124−1130.

GE Yanhui,LI Shucai,ZHANG Qingsong,et al. Comprehensive geological prediction based on risk evaluation during tunneling in karst area[J]. Chinese Journal of Geotechnical Engineering,2010,32(7):1124−1130.

[5] 王朋朋,张勇,许帆,等. 深长向斜隧道涌突水综合预报技术及应用[J]. 公路,2019,64(5):297−301.

[6] ZHU Hehua,YAN Jinxiu,LIANG Wenhao. Challenges and development prospects of ultra–long and ultra–deep mountain tunnels[J]. Engineering,2019,5(3):384−392.

[7] 武军杰. 瞬变电磁新技术在隧道超前地质预报中的应用研究[D]. 西安:长安大学,2005.

WU Junjie. Application research of transient electromagnetic new technology in advanced geological predicition of tunnels[D]. Xi’an:Chang’an University,2005.

[8] 沈福斌,黄倩,刘向辉,等. 矿井瞬变电磁探测技术及综合应用研究[J]. 陕西煤炭,2017,36(4):17−20.

SHEN Fubin,HUANG Qian,LIU Xianghui,et al. Research on the mine transient electromagnetic detectiontechnology and its comprehensive application[J]. Shaanxi Coal,2017,36(4):17−20.

[9] TARTARAS E,ZHDANOV M S,WADA K,et al. Fast imaging of TDEM data based on S–inversion[J]. Journal of Applied Geophysics,2000,43(1):15−32.

[10] 薛国强,李貅,底青云. 瞬变电磁法正反演问题研究进展[J]. 地球物理学进展,2008,23(4):1165−1172.

XUE Guoqiang,LI Xiu,DI Qingyun. Research progress in TEM forward modeling and inversion calculation[J]. Progress in Geophysics,2008,23(4):1165−1172.

[11] LEE K H,LIU G,MORRISON H F. A new approach to modeling the electromagnetic response of conductive media[J]. Geophysics,1989,54(9):1180−1192.

[12] GERSHENSON M. Simple interpretation of time–domain electromagnetic sounding using similarities between wave and diffusion propagation[J]. Geophysics,1997,62(3):763−774.

[13] 杨云见,王绪本,何展翔. 考虑关断时间效应的瞬变电磁一维反演[J]. 物探与化探,2005,29(3):234−236.

YANG Yunjian,WANG Xuben,HE Zhanxiang. 1D inversion of transient electromagnetic data in consideration of ramp time effect[J]. Geophysical and Geochemical Exploration,2005,29(3):234−236.

[14] 张继令,翁爱华. 中心回线瞬变电磁测深一维Occam反演[J]. 铁道勘察,2007,33(2):40−43.

ZHANG Jiling,WENG Aihua. Inversion display of Occam used in in–loop transient electromagnetic sounding[J]. Railway Investigation and Surveying,2007,33(2):40−43.

[15] 智庆全,武军杰,邓晓红,等. 地下瞬变电磁法一维反演[J]. 物探化探计算技术,2015,37(5):566−570.

ZHI Qingquan,WU Junjie,DENG Xiaohong,et al. The one–dimension inversion of underground transient electromagnetic data[J]. Computing Techniques for Geophysical and Geochemical Exploration,2015,37(5):566−570.

[16] 李大俊. 基于时频变换实现矩形大定源瞬变电磁数据三维频率域反演[D]. 长春:吉林大学,2017.

LI Dajun. Three–dimensional frequency–domain inversion of transient electromagnetic data from a rectanglar large loop based on time–frequency transformation method[D]. Changchun:Jilin University,2017.

[17] YANG Yunjian,WANG Xuben,LIU Xuejun,et al. A three–dimensional transient electromagnetic data inversion method based on a time–frequency transformation[J]. Applied Geophysics,2020,17(3):361−376.

[18] 齐彦福,智庆全,李貅,等. 考虑关断时间的地面瞬变电磁三维带地形反演[J]. 地球物理学报,2021,64(7):2566−2577.

QI Yanfu,ZHI Qingquan,LI Xiu,et al. Three–dimensional ground TEM inversion over a topographic earth considering ramp time[J]. Chinese Journal of Geophysics,2021,64(7):2566−2577.

[19] 柳尚斌. 基于后推欧拉与直接分解的瞬变电磁三维高效正演方法及L–BFGS三维反演[D]. 济南:山东大学,2022.

LIU Shangbin. Efficient 3D forward modeling method and L–BFGS inversion for transient electromagnetic based on backward Euler and direct–spliting scheme[D]. Jinan:Shandong University,2022.

[20] 李创社,张彦鹏,李实,等. 瞬变电磁勘探中的人工神经网络反演法[J]. 西安交通大学学报,2001,35(6):604−607.

LI Chuangshe,ZHANG Yanpeng,LI Shi,et al. New inversion method of artificial neural network in transient electromagnetic inversion[J]. Journal of Xi’an Jiaotong University,2001,35(6):604−607.

[21] 李明星,肖林通,张倚瑞,等. 瞬变电磁粒子群优化反演研究[J]. 煤炭技术,2014,33(9):302−304.

LI Mingxing,XIAO Lintong,ZHANG Yirui,et al. Research on particle swarm optimization inversion of transient electromagnetic method[J]. Coal Technology,2014,33(9):302−304.

[22] 李锋平,杨海燕,刘旭华,等. 瞬变电磁反演中的非线性规划遗传算法[J]. 物探与化探,2017,41(2):347−353.

LI Fengping,YANG Haiyan,LIU Xuhua,et al. Nonlinear programming genetic algorithm in transient electromagnetic inversion[J]. Geophysical and Geochemical Exploration,2017,41(2):347−353.

[23] 司元雷,郑龙金. 基于遗传退火进化算法的瞬变电磁非线性反演[J]. 计算机应用与软件,2020,37(11):172−177.

SI Yuanlei,ZHENG Longjin. Transient electromagnetic nonlinear inversion based on genetic annealing evolutionary algorithm[J]. Computer Applications and Software,2020,37(11):172−177.

[24] 李瑞友,白细民,张勇,等. 基于小波包分解与GA优化BP神经网络的瞬变电磁反演[J]. 吉林大学学报(地球科学版),2024,54(3):1003−1015.

LI Ruiyou,BAI Ximin,ZHANG Yong,et al. Using wavelet packet denoising and BP neural network based on GA optimization for transient electromagnetic inversion[J]. Journal of Jilin University (Earth Science Edition),2024,54(3):1003−1015.

[25] 韩自强. 用于大回线源瞬变电磁场一维正演计算的两种方法对比[J]. 地球物理学进展,2016,31(3):1103−1110.

HAN Ziqiang. Two calculation methods comparison for 1D large loop source transient electromagnetic field forward[J]. Progress in Geophysics,2016,31(3):1103−1110.

[26] 余友. 电磁测深中极值的研究及其应用[D]. 长沙:中南大学,2012.

YU You. Research and application of extreme in the electromagnetic sounding[D]. Changsha:Central South University,2012.

[27] 李金铭. 地电场与电法勘探[M]. 北京:地质出版社,2005.

[28] 薛国强,李貅,郭文波,等. 从瞬变电磁测深数据到平面电磁波场数据的等效转换[J]. 地球物理学报,2006,49(5):1539−1545.

XUE Guoqiang,LI Xiu,GUO Wenbo,et al. Equivalent transformation from TEM field sounding data to plane–wave electromagnetic sounding data[J]. Chinese Journal of Geophysics,2006,49(5):1539−1545.

[29] STERNBERG B K,WASHBURNE J C,PELLERIN L. Correction for the static shift in magnetotellurics using transient electromagnetic soundings[J]. Geophysics,1988,53(11):1459−1468.

[30] 陈明生. 关于频率电磁测深几个问题的探讨(八):频率电磁测深与瞬变电磁测深的关系[J]. 煤田地质与勘探,2015,43(1):81−85.

CHEN Mingsheng. On the relationship between the frequency electromagnetic sounding with the transient electromagnetic sounding[J]. Coal Geology & Exploration,2015,43(1):81−85.

[31] 张文昊. 弗雷歇距离判断曲线相似度的嵌入式模块[J]. 单片机与嵌入式系统应用,2020,20(9):17−20.

ZHANG Wenhao. Embedded module of curve similarity judging based on Fréchet distance[J]. Microcontrollers & Embedded Systems,2020,20(9):17−20.

[32] 何继善,吴小平,柳建新,等. 利用小波变换确定电磁测深曲线拐点的应用研究[J]. 物探化探计算技术,2005,27(3):219−222.

HE Jishan,WU Xiaoping,LIU Jianxin,et al. The application research of the inflection point ascertaining of electromagnetic sounding curve using wavelet transform[J]. Computing Techniques for Geophysical and Geochemical Exploration,2005,27(3):219−222.

[33] 孙怀凤. 隧道含水构造三维瞬变电磁场响应特征及突水灾害源预报研究[D]. 济南:山东大学,2013.

SUN Huaifeng. Three–dimensional transient electromagnetic responses of water bearing structures in tunnels and prediction of water inrush sources[D]. Jinan:Shandong University,2013.

[34] 陈小斌,赵国泽. 自动构建大地电磁二维反演的测点中心网格[J]. 地球物理学报,2009,52(6):1564−1572.

CHEN Xiaobin,ZHAO Guoze. Automatic construction of a site–centered grid (SCG) for 2D magnetotelluric inversion[J]. Chinese Journal of Geophysics,2009,52(6):1564−1572.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.