Coal Geology & Exploration
Abstract
Objective For the advance geological prediction of tunnels based on reflected seismic waves, the traditional 2D observation method tends to cause spatial positioning deviations of anomalies. To overcome this limitation, this study developed a 3D seismic wave-based advance geological prediction method according to the actual geometries of tunnels. Methods Using the technical path consisting of theoretical analysis, numerical simulation, and engineering verification, this study solved key technical challenges including 3D wavefield reconstruction, spatial modeling, and migration imaging in the 3D detection system. Based on the principle of geometric seismology, this study demonstrated the enhancement effects of 3D observation on the detection range and positioning accuracy of anomalies. Then, using the rotated staggered-grid finite-difference (RSFD) method, this study achieved the 3D wavefield forward modeling for tilted transversely isotropic (TTI) media in the full tunnel space, with flux-corrected transport (FCT) technology introduced to suppress numerical dispersion. In combination with the calculation of wavefront traveltimes using the fast marching method (FMM), this study achieved 3D migration imaging using the improved Kirchhoff integral theorem. Results Field tests in a railway tunnel in western Hubei Province indicate that the 3D advance geological prediction method detected a zone with dense fractures 20 m ahead of the tunnel face (at chainage 412). The anomaly body range detected using the 3D advance geological prediction method decreased by 20% compared to that determined using the 2D method. The result maps of the 3D advance geological prediction allowed for the presentation of the spatial morphology of the anomaly body from multiple perspectives. Conclusion The 3D advance geological prediction technology based on reflected seismic waves can enhance the spatial positioning capability and interpretation intuitiveness of geological anomalies, providing effective technical support for preventing and controlling geological hazards during tunnel construction.
Keywords
tunnel, advance geological prediction, 3d reflected seismic wave, forward modeling in a TTI medium, fast marching method (FMM), Kirchhoff migration imaging
DOI
10.12363/issn.1001-1986.25.01.0059
Recommended Citation
C.
(2025)
"3D advanced geological prediction based on reflected seismic waves and its application effects,"
Coal Geology & Exploration: Vol. 53:
Iss.
8, Article 17.
DOI: 10.12363/issn.1001-1986.25.01.0059
Available at:
https://cge.researchcommons.org/journal/vol53/iss8/17
Reference
[1] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报,2012,31(10):1945−1956.
QIAN Qihu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(10):1945−1956.
[2] 李坚,张铎,邓朝阳,等. 隧道穿越溶洞富水区超前地质预报与处置[J]. 人民长江,2023,54(8):173−177.
LI Jian,ZHANG Duo,DENG Zhaoyang,et al. Advanced geological prediction and disposal for tunnel crossing karst cave in water-richarea[J]. Yangize River,2023,54(8):173−177.
[3] 冯运江. 大型隧道断层破碎带超前地质预报方法[J]. 成都大学学报(自然科学版),2025,44(1):94−99.
FENG Yunjiang. Geological prediction method for large tunnel fault fracture zone[J]. Journal of Chengdu University (Natural Seience Edition),2025,44(1):94−99.
[4] 胡长明,傅庭鹏,刘俊峰. 隧洞穿越断层综合超前地质预报方法研究[J]. 施工技术,2025,54(4):74−81.
HU Changming,Fu Tingpeng,Llu Junfeng. Study on comprehensive advanced geological prediction method of tunnel crossing fault[J]. Construction Technology,2025,54(4):74−81.
[5] 赵子越,游元明,孟露,等. HSP法在盾构施工隧道超前地质预报中的改进和应用[J]. 隧道建设(中英文),2021,41(8):1344−1352.
ZHAO Ziyue,YOU Yuanming,MENG Lu,et al. Improvement and application of horizontal sonic/seismic profiling method in advance geological prediction of shield tunneling[J]. Tunnel Construction,2021,41(8):1344−1352.
[6] 李俊杰,张红纲,何建设,等. TSP探测精度分析及其在过江隧洞超前预报中的应用[J]. 煤田地质与勘探,2019,47(4):193–200.
LI Junjie,ZHANG Honggang,HE Jianshe,et al. Detection accuracy analysis of TSP and its application in a river-crossing tunnel construction[J]. Coal Geology and Exploration,2019,47(4):193–200.
[7] 晏军. 岩溶隧道超前地质预报几种主要物探方法的选择与实践[J]. 隧道建设(中英文),2020,40(Sup.1):327−336.
YAN Jun. Selection and application of several main geophysical methods for advanced geological prediction of karst tunnels[J]. Tunnel Construction,2020,40(Sup.1):327−336.
[8] 谭忠盛,吴金刚. 我国隧道钻爆法施工技术回顾与展望[J]. 隧道建设(中英文),2023,43(6):899−920.
TAN Zhongsheng,WU Jingang. Review and prospects of drilling and blasting tunnel construction technology in China[J]. Tunnel Construction,2023,43(6):899−920.
[9] 李文瑞. 基于TRT系统的隧道三维地质构造分析应用及改进方法研究[D]. 北京:北京交通大学,2017.
LI Wenrui. Research on the analytical application and improvement of three–dimensional geological structure based on TRT system[D]. Beijing:Beijing Jiaotong University,2017.
[10] 王合春. 岩溶地区公路隧道施工三维地震波探水技术[J]. 南水北调与水利科技(中英文),2024,22(1):210−216.
WANG Hechun. The technology of groundwater detection by 3D seismic waves during highway tunnel construction in karst areas[J]. South–to–North Water Transfers and Water Science & Technology,2024,22(1):210−216.
[11] 徐磊,尹剑,张建清,等. TGS360Pro技术三维正演及其与TSP技术对比试验研究[J]. 地球物理学进展,2022,37(3):1321−1329.
XU Lei,YIN Jian,ZHANG Jianqing,et al. Three dimensional forward modeling of TGS360Pro technology and its comparison with TSP technology[J]. Progress in Geophysics,2022,37(3):1321−1329.
[12] 安哲立,彭旸,袁振宇,等. 隧道地震波三维层析超前地质预报系统及工程应用[J]. 中国铁路,2024(11):37−44.
AN Zheli,PENG Yang,YUAN Zhenyu,et al. Tunnel seismic wave 3D tomography advanced geological prediction system and its engineering application[J]. China Railway,2024(11):37−44.
[13] 赵国军,李俊杰,江宗高,等. AGI–T3在输水隧洞超前地质预报中的应用[J]. 水利水电技术,2018,49(6):164−170.
ZHAO Guojun,LI Junjie,JIANG Zonggao,et al. Application of AGI–T3 to advance geological prediction for construction of water conveyance tunnel[J]. Water Resources and Hydropower Engineering,2018,49(6):164−170.
[14] 侯旭鸿,张胜,刘鑫,等. 基于CiteSpace的隧道超前地质预报研究进展与趋势[J]. 建筑技术,2024,55(11):1330−1333.
HOU Xuhong,ZHANG Sheng,LIU Xin,et al. Research progress and trend of tunnel advanced geological forecast based on CiteSpace[J]. Architecture Technology,2024,55(11):1330−1333.
[15] 高树全,蒋良文,牟元存,等. 西南复杂艰险山区铁路隧道超前地质预报技术[J]. 现代隧道技术,2024,61(2):52−59.
GAO Shuquan,JIANG Liangwen,MOU Yuancun,et al. Advanced geological forecasting techniques for railway tunnels in the complex and treacherous mountainous areas of Southwest China[J]. Modern Tunnelling Technology,2024,61(2):52−59.
[16] 蔡盛. 张吉怀铁路隧道超前预报技术应用研究[J]. 物探与化探,2021,45(5):1275−1280.
CAI Sheng. The research on the application of geological prediction technology to Zhangjihuai railway tunnel[J]. Geophysical and Geochemical Exploration,2021,45(5):1275−1280.
[17] 李雷,邵质中,蒋辉,等. TST和CFC技术在管片拼装隧道超前地质预报中的改进和应用[J]. 隧道建设(中英文),2023,43(增刊2):321−329.
LI Lei,SHAO Zhizhong,JIANG Hui,et al. Improvement and application of tunnel seismic tomography and complex frequency conductivity technology in advance geological prediction of segment–assembled tunnel[J]. Tunnel Construction,2023,43(Sup.2):321−329.
[18] 张霄,李术才,张庆松,等. 大型地下含水体对地震波特殊反射规律的现场正演试验研究[J]. 地球物理学报,2011,54(5):1367−1374.
ZHANG Xiao,LI Shucai,ZHANG Qingsong,et al. Field–testing study on seismic reflection response of large–scale underground water–bearing body[J]. Chinese Journal of Geophysics,2011,54(5):1367−1374.
[19] 李俊杰,张红纲,王伟,等. 综合物探技术在灰岩地区隧洞超前预报中的应用[J]. 地质与勘探,2019,55(6):1452−1462.
LI Junjie,ZHANG Honggang,WANG Wei,et al. Application of integrated geophysical methods to advanced prediction of a tunnel in a limestone area[J]. Geology and Exploration,2019,55(6):1452−1462.
[20] 宋杰. 隧道施工不良地质三维地震波超前探测方法及其工程应用[D]. 济南:山东大学,2016.
SONG Jie. The three–dimensional seismic ahead prospecting method and its application for adverse geology in tunnel construction[D]. Jinan:Shandong University,2016.
[21] 赵晓鹏,姚琦发,迟建平,等. 非炸药震源在隧道超前地质预报中的应用及效果分析[J]. 隧道建设(中英文),2021,41(增刊1):153−160.
ZHAO Xiaopeng,YAO Qifa,CHI Jianping,et al. Application and effect analysis of non–explosive seismic source in tunnel advance geological prediction[J]. Tunnel Construction,2021,41(Sup.1):153−160.
[22] 蔡盛. 基于横波的三维超前地质预报方法及应用[J]. 铁道工程学报,2022,39(10):30−36.
CAI Sheng. The 3D advance geological prediction method based on shear wave and its application[J]. Journal of Railway Engineering Society,2022,39(10):30−36.
[23] 蔡盛,张邦. 隧道三维地震反射波法超前地质预报偏移成像应用研究[J]. 工程地球物理学报,2021,18(5):613−619.
CAI Sheng,ZHANG Bang. Study on the application of migration imaging in advance geological prediction by tunnel 3D seismic reflection wave method[J]. Chinese Journal of Engineering Geophysics,2021,18(5):613−619.
[24] 李术才,王鑫,郭伟东,等. 钻爆法机械化施工隧道随钻地震波超前地质探测技术研究[J]. 隧道建设(中英文),2024,44(4):617−632.
LI Shucai,WANG Xin,GUO Weidong,et al. An advance geological detection technology of seismic wave while drilling in mechanized tunnel construction by drilling and blasting method[J]. Tunnel Construction,2024,44(4):617−632.
[25] 蔡盛. 隧道三维Kirchhoff偏移成像影响因素分析[J]. 物探化探计算技术,2023,45(1):8−16.
CAI Sheng. Analysis of influencing factors about 3–D tunnel Kirchhoff offset imaging[J]. Computing Techniques for Geophysical and Geochemical Exploration,2023,45(1):8−16.
[26] 鲁光银,熊瑛,朱自强. 隧道反射波超前探测有限差分正演模拟与偏移处理[J]. 中南大学学报(自然科学版),2011,42(1):136−141.
LU Guangyin,XIONG Ying,ZHU Ziqiang. Detection simulation ahead of tunnel face and reverse–time migration with reflection wave method[J]. Journal of Central South University (Science and Technology),2011,42(1):136−141.
[27] 王瑞,安哲立,田四明,等. 基于谱减法的隧道地震波超前探测去噪方法[J]. 隧道建设(中英文),2023,43(3):441−450.
WANG Rui,AN Zheli,TIAN Siming,et al. Denoising method based on spectral subtraction for seismic wave advance detection in tunnels[J]. Tunnel Construction,2023,43(3):441−450.
[28] 张晓丹,佘翼翀,张志禹,等. 旅行时快速步进(FMM)波前追踪算法研究[J]. 国外电子测量技术,2018,37(5):19−22.
ZHANG Xiaodan,SHE Yichong,ZHANG Zhiyu,et al. Research on fast matching method wave front tracking of travelling time[J]. Foreign Electronic Measurement Technology,2018,37(5):19−22.
[29] 丁鹏程,杨国权,李振春,等. 基于三维多模板快速推进算法的复杂近地表射线追踪[J]. 石油物探,2016,55(4):483−492.
DING Pengcheng,YANG Guoquan,LI Zhenchun,et al. Ray tracing based on 3D multi–stencils fast marching algorithm for complex near–surface model[J]. Geophysical Prospecting for Petroleum,2016,55(4):483−492.
[30] 张双杰,朱培民,赵仁基,等. 快速推进法计算精度分析及改进[J]. 工程地球物理学报,2009,6(3):257−265.
ZHANG Shuangjie,ZHU Peimin,ZHAO Renji,et al. Analysis on calculation accuracy of fast marching method and its improvement[J]. Chinese Journal of Engineering Geophysics,2009,6(3):257−265.
[31] 苏波,钟果,崔正伟,等. 深埋隧洞超前预报及特征数据三维分析的研究应用[J]. 水利水电技术(中英文),2025,56(增刊1):612−620.
SU Bo,ZHONG Guo,CUI Zhengwei,et al. Research application of overcasting and three–dimensional analysis of feature data in deeply buried tunnels[J]. Water Resources and Hydropower Engineering,2025,56(Sup.1):612−620.
[32] 沈鸿雁,李庆春,冯宏. 隧道反射地震超前探测偏移成像[J]. 煤炭学报,2009,34(3):298−304.
SHEN Hongyan,LI Qingchun,FENG Hong. Migration imaging for tunnel reflected–wave seismic prediction ahead[J]. Journal of China Coal Society,2009,34(3):298−304.
[33] 朱超,许兆义,王晓. 三维地震波层析成像技术在隧道超前地质预报中的应用[J]. 北京交通大学学报,2010,34(4):31−35.
ZHU Chao,XU Zhaoyi,WANG Xiao. Application of 3D seismic waves tomography technology to geological predication for tunneling[J]. Journal of Beijing Jiaotong University,2010,34(4):31−35.
[34] 曹国侯,王运生,李耀华,等. 三维成像系统在地下工程地质灾害预报中的应用[J]. 地下空间与工程学报,2014,10(增刊1):1735−1739.
CAO Guohou,WANG Yunsheng,LI Yaohua,et al. Application of three–dimensional imaging system for forecasting geological disasters in underground engineering[J]. Chinese Journal of Underground Space and Engineering,2014,10(Sup.1):1735−1739.
[35] 查欣洁,王伟,高星. 拟VSP与克希霍夫偏移法在隧道超前预报中的应用[J]. 物探与化探,2016,40(1):214−219.
ZHA Xinjie,WANG Wei,GAO Xing. The application of Pseudo VSP method and Kirchhoff migration to the tunnel advanced geological prediction[J]. Geophysical and Geochemical Exploration,2016,40(1):214−219.
[36] 赵云佩,王伟,侯献华. 基于克希霍夫偏移的槽波超前探测方法及应用[J]. 煤田地质与勘探,2019,47(4):186−192.
ZHAO Yunpei,WANG Wei,HOU Xianhua. Channel wave advanced detection method based on Kirchhoff migration and its application[J]. Coal Geology & Exploration,2019,47(4):186−192.
[37] 刘澳. 基于激光多普勒测振技术的水下声信号探测方法研究[D]. 桂林:桂林电子科技大学,2024.
LIU Ao. Research of underwater acoustic signal detection based on laser Doppler vibrometry technology[D]. Guilin:Guilin University of Electronic Technology,2024.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons