Coal Geology & Exploration
Abstract
Objective The Tarim Basin exhibits extensively distributed deep fractured-vuggy carbonate reservoirs. Therefore, determining the seismic and petrophysical characteristics of carbonate reservoirs with a fracture and vug system will provide significant guidance for the exploration, discovery, drilling, and exploitation of favorable reservoirs in the basin. Variations in the filling state of dissolution fractures and vugs will lead to significantly different elastic and attenuation characteristics of the reservoirs. Methods Based on geological insights into the geometric structural and filling characteristics of the dissolution fracture-vug system in the outcrop sections of carbonate strata in the Tarim Basin, this study proposed a digital rock modeling method for dissolution fracture-vug systems. Guided by physical similarity, this study calculated the dispersion and attenuation characteristics of digital rocks using dynamic stress-strain numerical simulations. Moreover, this study analyzed the wave dispersion and attenuation, as well as the underlying physical mechanisms, varying with the type and volume fraction of vug fillings, the volume fraction of fracture cements, and the gas saturation of fractures and vugs. Results and Conclusions Changes in the volume fractions of vug fillings and fracture cements significantly affected the wave velocity and attenuation in the reservoirs. The type of vug fillings produced a more pronounced impact on the wave velocity than the wave attenuation. In the case of varying gas saturation, the wave velocity manifested a monotonic variation trend, while the wave attenuation displayed complex jump characteristics. Wave velocity, as a parameter for characterizing the average properties of the internal structures of digital rocks, exhibited a strong correlation with vug fillings. In contrast, the wave attenuation was highly sensitive to the occurrence state of fluids within local structures of digital rocks. The results of this study can guide the quantitative seismic interpretation, selection of optimal attributes, and velocity modeling for deep fractured-vuggy carbonate reservoirs, supporting the high-precision geophysical characterization of these reservoirs.
Keywords
carbonate rock, dissolution fracture and vug, digital rock, dispersion, attenuation
DOI
10.12363/issn.1001-1986.25.03.0159
Recommended Citation
ZHU Wei, ZHAO Luanxiao, WANG Yirong,
et al.
(2025)
"Digital rock modeling and elastic simulations of fractured-vuggy carbonate reservoirs,"
Coal Geology & Exploration: Vol. 53:
Iss.
8, Article 16.
DOI: 10.12363/issn.1001-1986.25.03.0159
Available at:
https://cge.researchcommons.org/journal/vol53/iss8/16
Reference
[1] 马凌波,张佳佳,张广智,等. 基于岩石物理模型的碳酸盐岩物性参数替换方法[J]. CT理论与应用研究(中英文),2024,33(3):273−288.
MA Lingbo,ZHANG Jiajia,ZHANG Guangzhi,et al. Carbonate rock physical property parameter substitution method based on rock physics models[J]. Computerized Tomography Theory and Applications (in Chinese),2024,33(3):273−288.
[2] 李江龙,陈志海,高树生. 缝洞型碳酸盐岩油藏水驱油微观实验模拟研究:以塔河油田为例[J]. 石油实验地质,2009,31(6):637−642.
LI Jianglong,CHEN Zhihai,GAO Shusheng. Microcosmic experiment modeling on water–driven–oil mechanism in fractured–vuggy reservoirs[J]. Petroleum Geology & Experiment,2009,31(6):637−642.
[3] 金强,张三,孙建芳,等. 塔河油田奥陶系碳酸盐岩岩溶相形成和演化[J]. 石油学报,2020,41(5):513−525.
JIN Qiang,ZHANG San,SUN Jianfang,et al. Formation and evolution of karst facies of Ordovician carbonate in Tahe oilfield[J]. Acta Petrolei Sinica,2020,41(5):513−525.
[4] 马灵伟,顾汉明,李宗杰,等. 正演模拟碳酸盐岩缝洞型储层反射特征[J]. 石油地球物理勘探,2015,50(2):290−297.
MA Lingwei,GU Hanming,LI Zongjie,et al. Simulation of carbonate fracture–cavern reservoir reflection characteristics with forward modeling[J]. Oil Geophysical Prospecting,2015,50(2):290−297.
[5] 孙萌思,刘池洋,杨阳,等. 塔里木盆地塔中地区鹰山组碳酸盐岩缝洞型储层地震正演模拟研究[J]. 地学前缘,2017,24(5):339−349.
SUN Mengsi,LIU Chiyang,YANG Yang,et al. The forward modeling of fracture and cave carbonate reservoirs of the Yingshan Formation in Tazhong area,Tarim Basin[J]. Earth Science Frontiers,2017,24(5):339−349.
[6] 郑多明,汪家洪,肖又军,等. 基于地震数值模拟的溶洞型储层地震特征分析[J]. 西南石油大学学报(自然科学版),2023,45(6):57−68.
ZHENG Duoming,WANG Jiahong,XIAO Youjun,et al. Seismic characteristics analysis of karst cavity reservoirs based on seismic numerical simulation[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2023,45(6):57−68.
[7] BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics,1962,33(4):1482−1498.
[8] WHITE J E. Computed seismic speeds and attenuation in rocks with partial gas saturation[J]. Geophysics,1975,40(2):224−232.
[9] GUREVICH B,MAKARYNSKA D,DE PAULA O B,et al. A simple model for squirt–flow dispersion and attenuation in fluid–saturated granular rocks[J]. Geophysics,2010,75(6):N109−N120.
[10] WANG Yurong,ZONG Zhaoyun,SUN Qianhao. Modeling the effect of multiscale heterogeneities on wave attenuation and velocity dispersion[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61:4500817.
[11] SHI Zhiqi,HE Xiao,CHEN Dehua,et al. Seismic wave dispersion and attenuation resulting from multiscale wave–induced fluid flow in partially saturated porous media[J]. Geophysical Journal International,2023,236(2):1172−1182.
[12] 高静怀,徐文豪,吴帮玉,等. 深度均匀采样梯形网格有限差分地震波场模拟方法[J]. 地球物理学报,2018,61(8):3285−3296.
GAO Jinghuai,XU Wenhao,WU Bangyu,et al. Trapezoid grid finite difference seismic wavefield simulation with uniform depth sampling interval[J]. Chinese Journal of Geophysics,2018,61(8):3285−3296.
[13] 宋国杰,王智亮,张新敏,等. 黏滞声波地震波场模拟的SG–ONADM混合方法[J]. 地球物理学报,2019,62(9):3524−3533.
SONG Guojie,WANG Zhiliang,ZHANG Xinmin,et al. SG–ONADM hybrid method for simulation of the viscous acoustic seismic wave field[J]. Chinese Journal of Geophysics,2019,62(9):3524−3533.
[14] 苏波,李怀良,刘少林,等. 修正辛格式有限元法的地震波场模拟[J]. 地球物理学报,2019,62(4):1440−1452.
SU Bo,LI Huailiang,LIU Shaolin,et al. Modified symplectic scheme with finite element method for seismic wavefield modeling[J]. Chinese Journal of Geophysics,2019,62(4):1440−1452.
[15] 王润秋,李兰兰,李会俭. 塔里木地区勘探地震正演模拟研究[J]. 地球物理学报,2010,53(8):1875−1882.
WANG Runqiu,LI Lanlan,LI Huijian. Forward modeling research for seismic exploration of Tarim area[J]. Chinese Journal of Geophysics,2010,53(8):1875−1882.
[16] 朱伟,单蕊. 虚拟岩石物理研究进展[J]. 石油地球物理勘探,2014,49(6):1138−1146.
ZHU Wei,SHAN Rui. Progress of digital rock physics[J]. Oil Geophysical Prospecting,2014,49(6):1138−1146.
[17] 赵建国,潘建国,胡洋铭,等. 基于数字岩心的碳酸盐岩孔隙结构对弹性性质的影响研究(上篇):图像处理与弹性模拟[J]. 地球物理学报,2021,64(2):656−669.
ZHAO Jianguo,PAN Jianguo,HU Yangming,et al. Digital rock physics–based studies on effect of pore types on elastic properties of carbonate reservoir Part 1:Imaging processing and elastic modelling[J]. Chinese Journal of Geophysics,2021,64(2):656−669.
[18] WANG Changsheng,TIAN Lili,SUN Chuanrui,et al. Multi–scale characterization of tight carbonate rocks based on digital cores[J]. Frontiers in Earth Science,2025,13:1538316.
[19] YAO Jun,WANG Chenchen,YANG Yongfei,et al. The construction of carbonate digital rock with hybrid superposition method[J]. Journal of Petroleum Science and Engineering,2013,110:263−267.
[20] SAENGER E H,VIALLE S,LEBEDEV M,et al. Digital carbonate rock physics[J]. Solid Earth,2016,7(4):1185−1197.
[21] 赵建国,潘建国,胡洋铭,等. 基于数字岩心的碳酸盐岩孔隙结构对弹性性质的影响研究(下篇):储层孔隙结构因子表征与反演[J]. 地球物理学报,2021,64(2):670−683.
ZHAO Jianguo,PAN Jianguo,HU Yangming,et al. Digital rock physics–based studies on effect of pore types on elastic properties of carbonate reservoir Part 2:Pore structure factor characterization and inversion of reservoir[J]. Chinese Journal of Geophysics,2021,64(2):670−683.
[22] 田飞. 塔河油田碳酸盐岩岩溶缝洞结构和充填模式研究[D]. 东营:中国石油大学(华东),2014.
TIAN Fei. Investigation on construction and filling model of carbonate paleokarst fracture–caves in the Tahe oilfield[D]. Dongying:China University of Petroleum (East China),2014.
[23] 李海英,刘军,龚伟,等. 基于数字岩石物理的深层缝洞型碳酸盐岩储层地震弹性特征表征[J]. 地球物理学进展,2024,39(2):716−726.
LI Haiying,LIU Jun,GONG Wei,et al. Characterizing seismic elastic properties of deep cavity–fracture carbonate reservoir using digital rock physics[J]. Progress in Geophysics,2024,39(2):716−726.
[24] LIU Weihua,ZHAO Luanxiao,QIU Xuangan,et al. Use digital rock physics to characterize velocity and attenuation signatures of deep cavity–fracture carbonate reservoirs[J]. Journal of Geophysics and Engineering,2024,21(5):1476−1486.
[25] 王健,庞宇晗,操应长,等. 塔里木盆地石灰窑露头区寒武系碳酸盐岩断控岩溶储层的形成机制及指示意义[J]. 中国石油大学学报(自然科学版),2021,45(5):1−12.
WANG Jian,PANG Yuhan,CAO Yingchang,et al. Formation mechanism and significance of Cambrian carbonate fault–controlled karst reservoir in Shihuiyao outcrop area,Tarim Basin[J]. Journal of China University of Petroleum (Edition of Natural Science),2021,45(5):1−12.
[26] ZHU Wei,YU Wenhui,CHEN Yao. Digital core modeling from irregular grains[J]. Journal of Applied Geophysics,2012,85:37−42.
[27] 朱伟,於文辉. 过程法数字岩心建模与弹性参数模拟研究[J]. 地球物理学进展,2017,32(5):2188−2194.
ZHU Wei,YU Wenhui. Study on processed based method digital rock modeling and elastic property simulation[J]. Progress in Geophysics,2017,32(5):2188−2194.
[28] 朱伟. 基于过程法的数字岩心建模方法研究[J]. 地球物理学进展,2020,35(4):1539−1544.
ZHU Wei. Study on digital rock reconstruction using the process–based method[J]. Progress in Geophysics,2020,35(4):1539−1544.
[29] ZHANG Yang,TOKSÖZ M N. Computation of dynamic seismic responses to viscous fluid of digitized three–dimensional Berea sandstones with a coupled finite–difference method[J]. Journal of the Acoustical Society of America,2012,132(2):630−640.
[30] ZHU Wei,ZHAO Luanxiao,SHAN Rui. Modeling effective elastic properties of digital rocks using a new dynamic stress–strain simulation method[J]. Geophysics,2017,82(6):MR163−MR174.
[31] DAS V,MUKERJI T,MAVKO G. Numerical simulation of coupled fluid–solid interaction at the pore scale:A digital rock–physics technology[J]. Geophysics,2019,84(4):WA71−WA81.
[32] 朱伟,赵峦啸,王晨晨,等. 基于数字岩心动态应力应变模拟的非均匀孔隙介质波致流固相对运动刻画[J]. 地球物理学报,2020,63(6):2386−2399.
ZHU Wei,ZHAO Luanxiao,WANG Chenchen,et al. Characterization of wave–induced pore fluid flow based on dynamic stress strain simulation on digital rocks[J]. Chinese Journal of Geophysics,2020,63(6):2386−2399.
[33] 朱伟,赵峦啸,王一戎. 数字岩心宽频带动态应力应变模拟方法及其对含裂隙致密岩石频散和衰减特征的表征[J]. 地球物理学报,2021,64(6):2086−2096.
ZHU Wei,ZHAO Luanxiao,WANG Yirong. Digital rock–based broadband dynamic stress–strain simulation method and its applications for characterization of dispersion and attenuation signatures of tight cracked rock[J]. Chinese Journal of Geophysics,2021,64(6):2086−2096.
[34] ZHU Wei,ZHAO Luanxiao,YANG Zhifang,et al. Stress relaxing simulation on digital rock:Characterize attenuation due to wave–induced fluid flow and scattering[J]. Journal of Geophysical Research:Solid Earth,2023,128(2):e2022JB024850.
[35] YANG Zhifang,CAO Hong,ZHAO Luanxiao,et al. The effects of pore structure on wave dispersion and attenuation due to squirt flow:A dynamic stress–strain simulation on a simple digital pore–crack model[J]. Geophysics,2024,89(3):MR155−MR166.
[36] SAENGER E H,GOLD N,SHAPIRO S A. Modeling the propagation of elastic waves using a modified finite–difference grid[J]. Wave Motion,2000,31(1):77−92.
[37] 赫俊民,王小垚,孙建芳,等. 塔里木盆地塔河地区中–下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素[J]. 石油与天然气地质,2019,40(5):1022−1030.
HAO Junmin,WANG Xiaoyao,SUN Jianfang,et al. Characteristics and main controlling factors of natural fractures in the Lower–to–Middle Ordovician carbonate reservoirs in Tahe area,northern Tarim Basin[J]. Oil & Gas Geology,2019,40(5):1022−1030.
[38] 胡文革. 塔里木盆地塔河油田潜山区古岩溶缝洞类型及其改造作用[J]. 石油与天然气地质,2022,43(1):43−53.
HU Wenge. Paleokarst fracture–vug types and their reconstruction in buried hill area,Tahe oilfield,Tarim Basin[J]. Oil & Gas Geology,2022,43(1):43−53.
[39] 张文彪,张亚雄,段太忠,等. 塔里木盆地塔河油田托甫台区奥陶系碳酸盐岩断溶体系层次建模方法[J]. 石油与天然气地质,2022,43(1):207−218.
ZHANG Wenbiao,ZHANG Yaxiong,DUAN Taizhong,et al. Hierarchy modeling of the Ordovician fault–karst carbonate reservoir in Tuoputai area,Tahe oilfield,Tarim Basin,NW China[J]. Oil & Gas Geology,2022,43(1):207−218.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons