Coal Geology & Exploration
Abstract
Objective Substantial measured data indicate that the along-strike horizontal displacement of the surface tends to be nonzero in the central part of the mining-affected zone. This phenomenon deviates from traditional understanding, leading to systematic deviations in the predicted results of the traditional prediction model for horizontal displacement. Methods This study investigated mining face 1414 of the Guqiao Coal Mine in the Huainan mining area, Anhui Province. Using measured data and numerical simulation methods, this study explored the spatiotemporal evolution of the horizontal displacement within the mining overburden and of the surface. Then, it analyzed the sources, patterns, and distribution characteristics of both horizontal displacement along the goaf boundary and inertial horizontal displacement in the center of the mining area. Accordingly, this study constructed a new surface prediction model considering inertial horizontal displacement. Finally, this model was verified in mining face 1117 of the Guqiao coal mine. Results and Conclusions In the case of along-strike supercritical mining, the symmetrical along-strike horizontal displacement of the surface was observed on both flanks of the boundary inflection points of the mining zone. Additionally, along-strike inertial horizontal displacement also occurred in the central part of the mining zone. Consequently, the superimposed along-strike horizontal displacement of the surface was not proportional to the surface deformations in the inclination direction, failing to match traditional models. Inertial horizontal displacement arose from the underground mining process. In the simulation process, a smaller progressive step distance corresponded to more pronounced inertial horizontal displacement, which showed a distinct directly proportional relationship with the mining height. Inertial horizontal displacement peaked in the center of the surface mining zone and measured zero along the boundary of the mining-affected zone, generally resembling the distribution of surface subsidence. The new surface prediction model performed well in predicting the horizontal displacement of the surface in mining face 1117. Specifically, it yielded accurate predicted results of the difference in the horizontal displacement of the boundaries on both sides of the goaf and the horizontal displacement in the central part of the mining zone, with a fitting error of 7.0%. The results of this study hold significant implications for revealing the mechanisms underlying the horizontal displacement of the surface and improving the fundamental theory of mining subsidence.
Keywords
mining subsidence, horizontal displacement, inertial horizontal displacement, prediction model, mining overburden, spatiotemporal evolution
DOI
10.12363/issn.1001-1986.25.04.0226
Recommended Citation
C W.
(2025)
"Spatiotemporal evolution pattern of the inertial horizontal displacement of mining overburden and a surface prediction model considering inertial horizontal displacement,"
Coal Geology & Exploration: Vol. 53:
Iss.
8, Article 15.
DOI: 10.12363/issn.1001-1986.25.04.0226
Available at:
https://cge.researchcommons.org/journal/vol53/iss8/15
Reference
[1] 国家安全监管总局,国家煤矿安监局,国家能源局,等. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M]. 北京:煤炭工业出版社,2017.
[2] (苏)阿威尔辛С. Г. 煤矿地下开采的岩层移动[M]. 北京矿业学院矿山测量教研组,译. 北京:煤炭工业出版社,1959.
[3] (西德)克拉茨. 采动损害及其防护[M]. 马伟民,王金庄,王绍林,译. 北京:煤炭工业出版社,1984.
[4] LITWINISZYN J. Stochastic methods in mechanics of granular bodies[M]. Cham:Springer Vienna,1974.
[5] 刘宝琛,廖国华. 煤矿地表移动的基本规律[M]. 北京:中国工业出版社,1965.
[6] 何国清,杨伦,凌庚娣,等. 矿山开采沉陷学[M]. 徐州:中国矿业大学出版社,1991.
[7] 邹友峰,邓喀中,马伟民. 矿山开采沉陷工程[M]. 徐州:中国矿业大学出版社,2003.
[8] 王金庄,邢安仕. 矿山开采沉陷及其损害防治[M]. 北京:煤炭工业出版社,1995.
[9] 李静娴. 厚松散层下开采地表移动变形规律与区域预测模型构建[D]. 淮南:安徽理工大学,2021.
LI Jingxian. The law of surface movement and deformation and the construction of regional prediction model for mining under thick loose layers[D]. Huainan:Anhui University of Science & Technology,2021.
[10] 张传宝,蔡来良,王巍,等. 高强度重复开采覆岩与地表移动机理[J]. 金属矿山,2024(7):173−180.
ZHANG Chuanbao,CAI Lailiang,WANG Wei,et al. Overburden and surface movement mechanism of high intensity repeated mining[J]. Metal Mine,2024(7):173−180.
[11] 冯泽伟,浮耀坤,胡振琪,等. 陕北风积沙区超长工作面地表移动变形特征研究[J]. 煤炭工程,2023,55(7):120−125.
FENG Zewei,FU Yaokun,HU Zhenqi,et al. Characteristics of surface movement and deformation of super–long working face in eolian sand region in northern Shaanxi[J]. Coal Engineering,2023,55(7):120−125.
[12] DIDDLE B,AGIOUTANTIS Z,ESGUERRA E M,et al. Prediction of dynamic and final vertical and horizontal movements due to longwall mining[J]. Rock Mechanics and Rock Engineering,2025,58(4):4403−4420.
[13] 翟海鹏. 基于UAV摄影测量的矿区地表移动变形提取研究[D]. 徐州:中国矿业大学,2024.
ZHAI Haipeng. Extraction of surface movement and deformation in mining area based on UAV photogrammetry[D]. Xuzhou:China University of Mining and Technology,2024.
[14] 吴德军. 采动耕地三维变形无人机监测方法及应用研究[D]. 徐州:中国矿业大学,2023.
WU Dejun. UAV monitoring method for 3D deformation of extracted cultivated land and application research[D]. Xuzhou:China University of Mining and Technology,2023.
[15] 王玲. UAV摄影测量与InSAR融合监测矿区地表变形研究[D]. 徐州:中国矿业大学,2023.
WANG Ling. Research on the fusion of UAV photogrammetry and InSAR for monitoring the surface deformation in mining areas[D]. Xuzhou:China University of Mining and Technology,2023.
[16] ZHU Yuanhao,YAN Yueguan,DAI Anjin,et al. UAV–MSSH:A novel UAV photogrammetry–based framework for mining surface three–dimensional movement basin monitoring[J]. Measurement,2025,242:115944.
[17] ZHAO Jinqi,NIU Yufen,ZHOU Zhengpei,et al. Construction of mining subsidence basin and inversion of predicted subsidence parameters based on UAV photogrammetry products considering horizontal displacement[J]. Remote Sensing,2024,16(22):4283.
[18] 李永树,王金庄,陈勇. 开采沉陷地区地表水平移动机理[J]. 煤,1996,5(1):27–29.
[19] 李日富,梁运培,程国强. 采空区覆岩走向水平移动机理研究[J]. 煤矿安全,2008,39(4):8−11.
LI Rifu,LIANG Yunpei,CHENG Guoqiang. Study on law of strike horizontal displacement about overburden of goaf[J]. Safety in Coal Mines,2008,39(4):8−11.
[20] 何国清. 充分采动区内及主断面上水平移动变形的分布规律[J]. 中国矿业学院学报,1986,15(2):62−73.
HE Guoqing. The displacements in full subsidence area and the distribution laws of horizontal displacements and deformations along main profile of mining basin[J]. Journal of China University of Mining & Technology,1986,15(2):62−73.
[21] 何国清. 岩移预计的威布尔分布法[J]. 中国矿业学院学报,1988,17(1):8−15.
HE Guoqing. The weber–distribution method for calculating mining subsidence[J]. Journal of China University of Mining & Technology,1988,17(1):8−15.
[22] 吴侃,葛家新,周鸣,等. 概率积分法预计模型的某些修正[J]. 煤炭学报,1998,23(1):33−36.
WU Kan,GE Jiaxin,ZHOU Ming,et al. Some modifications of using probability integral method to predicate model[J]. Journal of China Coal Society,1998,23(1):33−36.
[23] 吴侃,葛家新,王铃丁,等. 开采沉陷预计一体化方法[M]. 徐州:中国矿业大学出版社,1998.
[24] 钱鸣高,朱德仁,王作棠. 老顶岩层断裂型式及对工作面来压的影响[J]. 中国矿业学院学报,1986,15(2):9−18.
QIAN Minggao,ZHU Deren,WANG Zuotang. The fracture types of main roof and their effects on roof pressure in coal face[J]. Journal of China University of Mining & Technology,1986,15(2):9−18.
[25] 钱鸣高,缪协兴,何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报,1994,19(6):557−563.
QIAN Minggao,MIAO Xiexing,HE Fulian. Analysis of key block in the structure of voussoir beam in longwall mining[J]. Journal of China Coal Society,1994,19(6):557−563.
[26] 王家臣,许家林,杨胜利,等. 煤矿采场岩层运动与控制研究进展:纪念钱鸣高院士“砌体梁”理论40年[J]. 煤炭科学技术,2023,51(1):80−94.
WANG Jiachen,XU Jialin,YANG Shengli,et al. Development of strata movement and its control in underground mining:In memory of 40 years of Voussoir Beam Theory proposed by Academician Minggao Qian[J]. Coal Science and Technology,2023,51(1):80−94.
[27] 钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996,21(3):225−230.
QIAN Minggao,MIAO Xiexing,XU Jialin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society,1996,21(3):225−230.
[28] (波)鲍莱茨基,(波)胡戴克. 矿山岩体力学[M]. 于振海,刘天泉,译. 北京:煤炭工业出版社,1985.
[29] 左建平,孙运江,钱鸣高. 厚松散层覆岩移动机理及“类双曲线”模型[J]. 煤炭学报,2017,42(6):1372−1379.
ZUO Jianping,SUN Yunjiang,QIAN Minggao. Movement mechanism and analogous hyperbola model of overlying strata with thick alluvium[J]. Journal of China Coal Society,2017,42(6):1372−1379.
[30] 左建平,徐丞谊,孙运江,等. 采动岩层整体移动“类双曲线”理论模型及验证:从二维“类双曲线”到三维“类双曲面”模型[J]. 煤炭学报,2024,49(4):1731−1751.
ZUO Jianping,XU Chengyi,SUN Yunjiang,et al. Theoretical model and verification of “analogous hyperbola (hyperboloid)” for the overall movement of mining rock strata:From two–dimensional “analogous hyperbola” to three–dimensional “analogous hyperboloid” models[J]. Journal of China Coal Society,2024,49(4):1731−1751.
[31] 于楷. 地表移动规律及与上覆岩层运动的相关研究:以顾桥矿1117(1)工作面为例[D]. 淮南:安徽理工大学,2011.
YU Kai. Research relating to law of surface movement and overlying strata:Example of Guqiao 1117(1) mine mining face[D]. Huainan:Anhui University of Science & Technology,2011.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons