Coal Geology & Exploration
Abstract
Background With the increasing demand for strategic metals and the gradual depletion of traditional metal deposit resources, coal and coal-bearing rock series are considered to be potential sources of rare metals, and coal series associated has become one of the main directions of current mineral exploration. A set of coal measure strata rich in niobium (Nb) and rare earth elements (REE) has been found in Zhina coalfield, western Guizhou and the contents of Nb and REE are as high as 334.89 μg/g and 1014.51 μg/g, respectively. This discovery is of great significance to the theoretical study of coal measure metal deposits. Methods The Longtan Formation coal measures in Zhina coalfield were selected as the research object. Industrial analysis, Scanning Electron Microscope Energy Dispersive Spectrum (SEM-EDS), X-ray fluorescence spectroscopy (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) were used to analyze the geochemical characteristics of coal-bearing strata rich in Nb and REE in Zhina coalfield, and the enrichment and genesis of key metal elements in coal-bearing strata were discussed in depth. Results and Conclusions (1) Coal measures belong to anthracite with low moisture, low-medium ash, low volatile and medium-high sulfur. The minerals in coal are mainly composed of pyrite, clay minerals and quartz, and sphalerite and anatase are also found. The major elements are mainly SiO2 and Al2O3, and the contents of Fe2O3, MgO and TiO2 are high. (2) Compared with the average trace elements in the world's coals, the coal-bearing strata are enriched in key metal elements such as Nb, Ta (tantalum), Zr (zirconium), Hf (hafnium) and REE. Vertically, the key metal elements of No.9 coal seam are the most enriched in the coal seam. On the plane, the content of key metal elements in the study area has a trend of gradually increasing from south to north. The type of rare earth elements in Zhina coalfield coal is light rare earth enrichment type, and the degree of light and heavy rare earth fractionation is high. Furthermore, the negative anomalies of δEu and δCe suggest a relatively stable terrestrial input, and the coal-formi sedimentary environment was dominated by aroxic conditions with minor redox condition fluctuation during diagenesis. (3) Through the analysis of inactive elements and REE provenance tracing, the key metal-enriched materials in the coal measure strata of Longtan Formation in Zhina coalfield are derived from the weathered debris of Emeishan high-titanium basalt and top intermediate-acid rock in Kangdian ancient land, and are also affected by the input of co-deposited alkaline volcanic ash and felsic volcanic ash. At the same time, the key metal elements in coal form Nb(Ta)-Zr(Hf)-REY polymetallic mineralization enrichment layer under the common constraints of material source and sedimentary environment.
Keywords
geochemical characteristics, Nb, rare earth elements (REEs), material source, Emeishan basalt, enrichment mode, Permian, Longtan Formation, Zhina coalfield
DOI
10.12363/issn.1001-1986.25.03.0196
Recommended Citation
DING Yunlong, WANG Fangfa, LI Bi,
et al.
(2025)
"Geochemical characteristics and genesis of element enrichment of niobium-rich-rare earth metal layer in Longtan Formation of Zhina coalfield,"
Coal Geology & Exploration: Vol. 53:
Iss.
8, Article 10.
DOI: 10.12363/issn.1001-1986.25.03.0196
Available at:
https://cge.researchcommons.org/journal/vol53/iss8/10
Reference
[1] VALANT M,AXELSSON A K,ALFORD N. Review of Ag (Nb,Ta) O3 as a functional material[J]. Journal of the European Ceramic Society,2007,27(7):2549−2560.
[2] MA Jingyi,GUO Xiaotian,XUE Huaiguo,et al. Niobium/tantalum–based materials:Synthesis and applications in electrochemical energy storage[J]. Chemical Engineering Journal,2020,380:122428.
[3] TSAKIROPOULOS P. Alloys for application at ultra–high temperatures:Nb–silicide in situ composites challenges,breakthroughs and opportunities[J]. Progress in Materials Science,2022,123:100714.
[4] 王登红,孙艳,代鸿章,等. 我国“三稀矿产”的资源特征及开发利用研究[J]. 中国工程科学,2019,21(1):119−127.
WANG Denghong,SUN Yan,DAI Hongzhang,et al. Characteristics and exploitation of rare earth,rare metal and rare–scattered element minerals in China[J]. Strategic Study of CAE,2019,21(1):119−127.
[5] 赵存良. 鄂尔多斯盆地与煤伴生多金属元素的分布规律和富集机理[D]. 北京:中国矿业大学(北京),2015.
ZHAO Cunliang. Distribution and enrichment mechanism of multi–metallic elements associated with coal in Ordos Basin[D]. Beijing:China University of Mining & Technology (Beijing),2015.
[6] 代世峰,任徳贻,周义平,等. 煤型稀有金属矿床:成因类型、赋存状态和利用评价[J]. 煤炭学报,2014,39(8):1707−1715.
DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Coal–hosted rare metal deposits:Genetic types,modes of occurrence,and utilization evaluation[J]. Journal of China Coal Society,2014,39(8):1707−1715.
[7] 代世峰,赵蕾,魏强,等. 中国煤系中关键金属资源:富集类型与分布[J]. 科学通报,2020,65(33):3715−3729.
DAI Shifeng,ZHAO Lei,WEI Qiang,et al. Resources of critical metals in coal–bearing sequences in China:Enrichment types and distribution[J]. Chinese Science Bulletin,2020,65(33):3715−3729.
[8] 代俊峰,李增华,许德如,等. 煤型关键金属矿产研究进展[J]. 大地构造与成矿学,2021,45(5):963−982.
DAI Junfeng,LI Zenghua,XU Deru,et al. Coal–hosted critical metal deposits:A review[J]. Geotectonica et Metallogenia,2021,45(5):963−982.
[9] DAI Shifeng,CHEKRYZHOV I Y,SEREDIN V V,et al. Metalliferous coal deposits in East Asia (Primorye of Russia and South China):A review of geodynamic controls and styles of mineralization[J]. Gondwana Research,2016,29(1):60−82.
[10] DAI Shifeng,FINKELMAN R B. Coal as a promising source of critical elements:Progress and future prospects[J]. International Journal of Coal Geology,2018,186:155−164.
[11] DAI Shifeng,ZHAO Lei,PENG Suping,et al. Abundances and distribution of minerals and elements in high–alumina coal fly ash from the Junggar Power Plant,Inner Mongolia,China[J]. International Journal of Coal Geology,2010,81(4):320−332.
[12] DAI Shifeng,YAN Xiaoyun,WARD C R,et al. Valuable elements in Chinese coals:A review[J]. International Geology Review,2018,60(5/6):590−620.
[13] LIU Bangjun,WANG Junyan,HE Hongtao,et al. Geochemistry of Carboniferous coals from the Laoyaogou mine,Ningwu coalfield,Shanxi Province,northern China:Emphasis on the enrichment of valuable elements[J]. Fuel,2020,279:118414.
[14] 曹飞,杨卉芃,张亮,等. 全球钽铌矿产资源开发利用现状及趋势[J]. 矿产保护与利用,2019,39(5):56−67.
CAO Fei,YANG Huipeng,ZHANG Liang,et al. Current situation and trend analysis of global tantalum and niobium mineral resources[J]. Conservation and Utilization of Mineral Resources,2019,39(5):56−67.
[15] 邓攀,陈玉明,叶锦华,等. 全球铌钽资源分布概况及产业发展形势分析[J]. 中国矿业,2019,28(4):63−68.
DENG Pan,CHEN Yuming,YE Jinhua,et al. Study on the resource distribution and industry development of global niobium and tantalum[J]. China Mining Magazine,2019,28(4):63−68.
[16] COE H H,BIRGENHEIER L P,FERNANDEZ D P,et al. Rare earth element enrichment in coal and coal–adjacent strata of the Uinta region,Utah and Colorado[J]. Frontiers in Earth Science,2024,12:1381152.
[17] ARBUZOV S l,CHEKRYZHOV I Y,FINKELMAN R B,et al. Comments on the geochemistry of rare–earth elements (La,Ce,Sm,Eu,Tb,Yb,Lu) with examples from coals of North Asia (Siberia,Russian far East,North China,Mongolia,and Kazakhstan)[J]. International Journal of Coal Geology,2019,206:106−120.
[18] NECHAEV V P,CHEKRYZHOV I Y,VYSOTSKIY S V,et al. Isotopic signatures of REY mineralization associated with lignite basins in South Primorye,Russian Far East[J]. Ore Geology Reviews,2018,103:68−77.
[19] SEREDIN V V,ARBUZOV S I,ALEKSEEV V P. Sc–bearing coals from Yakhlinsk deposit,western Siberia[J]. Doklady Earth Sciences,2006,409(6):967−972.
[20] DAI Shifeng,ZHOU Yiping,ZHANG Mingquan,et al. A new type of Nb (Ta)–Zr (Hf)–REE–Ga polymetallic deposit in the Late Permian coal–bearing strata,eastern Yunnan,southwestern China:Possible economic significance and genetic implications[J]. International Journal of Coal Geology,2010,83(1):55−63.
[21] 张衍,程伟,杨瑞东,等. 贵州煤中某些金属元素异常富集研究进展[J]. 地质论评,2023,69(1):247−265.
ZHANG Yan,CHENG Wei,YANG Ruidong,et al. A review on the abnormal enrichment of some metals in coals from Guizhou[J]. Geological Review,2023,69(1):247−265.
[22] 贵州省地质矿产局. 贵州省区域地质志[M]. 北京:地质出版社,1987.
[23] ZHONG Hong,CAMPBELL I H,ZHU Weiguang,et al. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province[J]. Geochimica et Cosmochimica Acta,2011,75(5):1374−1395.
[24] DECONINCK J F,CRASQUIN S,BRUNEAU L,et al. Diagenesis of clay minerals and K–bentonites in Late Permian/Early Triassic sediments of the Sichuan Basin (Chaotian section,Central China)[J]. Journal of Asian Earth Sciences,2014,81:28−37.
[25] HE Bin,XU Yigang,HUANG Xiaolong,et al. Age and duration of the Emeishan flood volcanism,SW China:Geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites,post–volcanic Xuanwei Formation and clay tuff at the Chaotian section[J]. Earth and Planetary Science Letters,2007,255(3/4):306−323.
[26] XU Yigang,CHUNG S L,SHAO Hui,et al. Silicic magmas from the Emeishan large igneous province,Southwest China:Petrogenesis and their link with the end–Guadalupian biological crisis[J]. Lithos,2010,119(1/2):47−60.
[27] 张七道,肖长源,李致伟,等. 黔西北普宜地区富关键金属元素硫铁矿地质、地球化学和S同位素特征及其对成因的约束[J]. 地质科技通报,2022,41(4):149−164.
ZHANG Qidao,XIAO Changyuan,LI Zhiwei,et al. Geological,geochemical and sulfur isotopic characteristics of critical metal–enriched pyritic ore in the Puyi area,northwest Guizhou Province:Constraints on the genesis of the deposit[J]. Bulletin of Geological Science and Technology,2022,41(4):149−164.
[28] 刘晶晶,韩秋婵,赵书茂,等. 贵州西部晚二叠世煤中关键金属异常富集的物质来源[J]. 煤炭学报,2022,47(5):1782−1794.
LIU Jingjing,HAN Qiuchan,ZHAO Shumao,et al. The sources of abnormally enriched critical metals in the Late Permian coals of western Guizhou Province[J]. Journal of China Coal Society,2022,47(5):1782−1794.
[29] HE Bin,XU Yigang,CHUNG S L,et al. Sedimentary evidence for a rapid,kilometer–scale crustal doming prior to the eruption of the Emeishan flood basalts[J]. Earth and Planetary Science Letters,2003,213(3/4):391−405.
[30] XU Yigang,CHUNG S L,JAHN B M,et al. Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China[J]. Lithos,2001,58(3/4):145−168.
[31] ZI Jianwei,FAN Weiming,WANG Yuejun,et al. Geochemistry and petrogenesis of the Permian mafic dykes in the Panxi region,SW China[J]. Gondwana Research,2008,14(3):368−382.
[32] 中国煤田地质总局. 黔西川南滇东晚二叠世含煤地层沉积环境与聚煤规律[M]. 重庆:重庆大学出版社,1996.
[33] 周汝贤,吴涛,孟中能,等. 威宁地区二叠系稀土含矿岩系沉积环境分析[J]. 矿物学报,2025,45(2):360−372.
ZHOU Ruxian,WU Tao,MENG Zhongneng,et al. Analysis on the sedimentary environment of Permian rare earth ore–bearing rock series in the Weining area,Guizhou,China[J]. Acta Mineralogica Sinica,2025,45(2):360−372.
[34] 张海,何明友,卢啟富,等. 贵州西部二叠系玄武岩古风化壳常量元素地球化学特征研究[J]. 地球科学进展,2012,27(增刊1):144−148.
ZHANG Hai,HE Mingyou,LU Qifu,et al. Geochemical characteristics of paleo–weathering crust in Permian basalt,western Guizhou Province[J]. Advances in Earth Science,2012,27(Sup.1):144−148.
[35] 黄训华. 威宁鹿房稀土矿地质特征及成矿作用初步分析[J]. 贵州地质,1997,14(4):328−333.
HUANG Xunhua. The Lufang rare earth deposit in Weining,western Guizhou and its mineralization[J]. Guizhou Geology,1997,14(4):328−333.
[36] DAI Shifeng,WANG Xibo,ZHOU Yiping,et al. Chemical and mineralogical compositions of silicic,mafic,and alkali tonsteins in the Late Permian coals from the Songzao coalfield,Chongqing,southwest China[J]. Chemical Geology,2011,282(1/2):29−44.
[37] DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3−21.
[38] LIU Qinfu,ZHANG Pengfei. The composition and mineralization mechanism of kaolinite rocks in Late–Palaeozoic coal measures,North China[M]. Beijing:Marine Press,1997.
[39] DAI Shifeng,SEREDIN V V,WARD C R,et al. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions:Geochemical and mineralogical data from the Late Permian Guiding coalfield,Guizhou,China[J]. Mineralium Deposita,2015,50(2):159−186.
[40] KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135−148.
[41] SEREDIN V V,DAI Shifeng. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology,2012,94:67−93.
[42] TAYLOR S R,MCLENNAN S M. The continental crust:Its composition and evolution[M]. Oxford:Blackwell Scientific Publications,1985.
[43] 陆一敢,肖益林,王洋洋,等. Li同位素在矿床学中的应用:现状与展望[J]. 地球科学,2021,46(12):4346−4365.
LU Yigan,XIAO Yilin,WANG Yangyang,et al. Exploration of Li isotope in application of ore deposits[J]. Earth Science,2021,46(12):4346−4365.
[44] 王曼,钟玉婷,侯莹玲,等. 华南地区二叠纪–三叠纪界线酸性火山灰的源区与规模[J]. 岩石学报,2018,34(1):36−48.
WANG Man,ZHONG Yuting,HOU Yingling,et al. Source and extent of the felsic volcanic ashes at the Permian–Triassic boundary in South China[J]. Acta Petrologica Sinica,2018,34(1):36−48.
[45] 闫峻,赵建新,刘海泉. 华北龙岗第四纪玄武岩:岩石成因和源区性质[J]. 岩石学报,2007,23(6):1413−1422.
YAN Jun,ZHAO Jianxin,LIU Haiquan. Quaternary basalts from Longgang in the North China Craton:Petrologenesis and characteristics of the mantle source[J]. Acta Petrologica Sinica,2007,23(6):1413−1422.
[46] 高利娥,曾令森,严立龙,等. 花岗质熔体结构的改变与稀有金属W–Sn–Nb–Ta的富集:以夏如早古生代花岗岩为例[J]. 岩石学报,2022,38(11):3281−3301.
GAO Li’e,ZENG Lingsen,YAN Lilong,et al. Changes in the melt structure and enrichment of rare metals W–Sn–Nb–Ta in granitic magma:An example from the Xiaru Early Paleozoic granites[J]. Acta Petrologica Sinica,2022,38(11):3281−3301.
[47] 徐义刚. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘,2002,9(4):341−353.
XU Yigang. Mantle plumes,large igneous provinces and their geologic consequences[J]. Earth Science Frontiers,2002,9(4):341−353.
[48] 何斌,徐义刚,肖龙,等. 峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据[J]. 地质学报,2003,77(2):194−202.
HE Bin,XU Yigang,XIAO Long,et al. Generation and spatial distribution of the Emeishan large igneous province:New evidence from stratigraphic records[J]. Acta Geologica Sinica,2003,77(2):194−202.
[49] 秦国红. 鄂尔多斯盆地晚古生代煤中微量元素富集特征与成因类型[D]. 北京:中国矿业大学(北京),2020.
QIN Guohong. Enrichment characteristics and genetic types of trace elements in the Late Paleozoic coal from Ordos Basin[D]. Beijing:China University of Mining & Technology (Beijing),2020.
[50] DAI Shifeng,GRAHAM I T,WARD C R. A review of anomalous rare earth elements and yttrium in coal[J]. International Journal of Coal Geology,2016,159:82−95.
[51] HE Bin,XU Yigang,ZHONG Yuting,et al. The Guadalupian–Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs:Implication for a temporal coincidence between the end–Guadalupian mass extinction and the Emeishan volcanism[J]. Lithos,2010,119(1/2):10−19.
[52] XIAO Long,XU Yigang,MEI Houjun,et al. Distinct mantle sources of low–Ti and high–Ti basalts from the western Emeishan large igneous province,SW China:Implications for plume–lithosphere interaction[J]. Earth and Planetary Science Letters,2004,228(3/4):525−546.
[53] LIANG Xiaoliang,WU Puqiu,WEI Gaoling,et al. Enrichment and fractionation of rare earth elements (REEs) in ion–adsorption–type REE deposits:Constraints of an iron (hydr) oxide–clay mineral composite[J]. American Mineralogist,2025,110(1):114−135.
[54] 钟招煌,李新冬,于思伟,等. 氧化石墨烯基材料吸附回收稀土元素的研究进展[J]. 现代化工,2023,43(9):61−65.
ZHONG Zhaohuang,LI Xindong,YU Siwei,et al. Research progress in adsorption and recovery of rare earth elements by graphene oxide based materials[J]. Modern Chemical Industry,2023,43(9):61−65.
[55] 佘海东,范宏瑞,胡芳芳,等. 稀土元素在热液中的迁移与沉淀[J]. 岩石学报,2018,34(12):3567−3581.
SHE Haidong,FAN Hongrui,HU Fangfang,et al. Migration and precipitation of rare earth elements in the hydrothermal fluids[J]. Acta Petrologica Sinica,2018,34(12):3567−3581.
[56] 张风雷,季宏兵,魏晓,等. 黔中白云岩风化剖面微量元素的地球化学特征[J]. 地球与环境,2014,42(5):611−619.
ZHANG Fenglei,JI Hongbing,WEI Xiao,et al. Geochemical characteristics of trace elements in a dolomite weathering profile in central Guizhou Province[J]. Earth and Environment,2014,42(5):611−619.
[57] CAI Yelei,OUYANG Fei,LUO Xianrong,et al. Geochemical characteristics and constraints on provenance,tectonic setting,and paleoweathering of Middle Jurassic Zhiluo Formation sandstones in the northwest Ordos Basin,North–Central China[J]. Minerals,2022,12(5):603.
[58] 周科. 常量元素与微量元素特征在物源分析中的应用[J]. 辽宁化工,2014,43(4):515−520.
ZHOU Ke. Application of the characteristics of major elements and trace elements in provenance analysis[J]. Liaoning Chemical Industry,2014,43(4):515−520.
[59] BHATIA M R,CROOK K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology,1986,92(2):181−193.
[60] ALLÈGRE C J,MINSTER J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters,1978,38(1):1−25.
[61] HAYASHI K I,FUJISAWA H,HOLLAND H D,et al. Geochemistry of similar to 1.9 Ga sedimentary rocks from northeastern Labrador,Canada[J]. Geochimica et Cosmochimica Acta,1997,61(19):4115–4137.
[62] GIRTY G H,RIDGE D L,KNAACK C,et al. Provenance and depositional setting of Paleozoic chert and argillite,Sierra Nevada,California[J]. Journal of Sedimentary Research,1996,66(1):107−118.
[63] DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Coal–hosted rare metal deposits:Genetic types,modes of occurrence,and utilization evaluation[J]. Journal of the China Coal Society,2014,39(8):1707−1715.
[64] LIU Jingjing,SONG Hongjian,DAI Shifeng,et al. Mineralization of REE–Y–Nb–Ta–Zr–Hf in Wuchiapingian coals from the Liupanshui coalfield,Guizhou,southwestern China:Geochemical evidence for terrigenous input[J]. Ore Geology Reviews,2019,115:103190.
[65] LI Baoqing,ZHUANG Xinguo,QUEROL X,et al. Geological controls on the distribution of REY–Zr (Hf)–Nb (Ta) enrichment horizons in Late Permian coals from the Qiandongbei coalfield,Guizhou Province,SW China[J]. International Journal of Coal Geology,2020,231:103604.
[66] WINCHESTER J A,FLOYD P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology,1977,20:325−343.
[67] ALLÈGRE C J,MICHARD G. Introduction to geochemistry[M]. Dordrecht:Reidel Publishing Company,1974.
[68] ZHOU Yiping,BOHOR B F,REN Youliang. Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal–bearing formations of eastern Yunnan and western Guizhou Provinces,China[J]. International Journal of Coal Geology,2000,44(3/4):305−324.
[69] DAI Shifeng,REN Deyi,HOU Xiaoqiang,et al. Geochemical and mineralogical anomalies of the Late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin[J]. International Journal of Coal Geology,2003,55(2/3/4):117−138.
[70] DAI Shifeng,LI Tian,SEREDIN V V,et al. Origin of minerals and elements in the Late Permian coals,tonsteins,and host rocks of the Xinde mine,Xuanwei,eastern Yunnan,China[J]. International Journal of Coal Geology,2014,121:53−78.
[71] VLADIMIR B. Geoehemistry of coal[M]. Prague:Aeademia,1981.
[72] 崔光来,全书进,吴朝东. 焉耆盆地侏罗系煤中微量元素地球化学特征及意义[J]. 北京大学学报(自然科学版),2004,40(4):594−600.
CUI Guanglai,QUAN Shujin,WU Chaodong. Jurassic coal in Yanqi Basin (Xinjiang,China):Geochemical characteristics of trace elements and their implications[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2004,40(4):594−600.
[73] 吕荐阔,翟世奎,于增慧,等. 氧化还原敏感性元素在沉积环境判别中的应用研究进展[J]. 海洋科学,2021,45(12):108−124.
LYU Jiankuo,ZHAI Shikui,YU Zenghui,et al. Application and influence factors of redox–sensitive elements in a sedimentary environment[J]. Marine Sciences,2021,45(12):108−124.
[74] JONES B,MANNING D A C. Comparison of geochemical indices used for the interpretation of Palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1/2/3/4):111−129.
[75] WANG Wenfeng,QIN Yong,SANG Shuxun,et al. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district,Shanxi,China[J]. International Journal of Coal Geology,2008,76(4):309−317.
[76] 王中刚. 稀土元素地球化学[M]. 北京:科学出版社,1989.
[77] RAISWELL R,PLANT J. The incorporation of trace elements into pyrite during diagenesis of black shales,Yorkshire,England[J]. Economic Geology,1980,75(5):684−699.
[78] CHIVAS A R,DE DECKKER P,SHELLEY J M G. Strontium content of ostracods indicates lacustrine palaeosalinity[J]. Nature,1985,316(6025):251−253.
[79] 颜佳新,徐四平,李方林. 湖北巴东栖霞组缺氧沉积环境的地球化学特征[J]. 岩相古地理,1998,18(6):27−32.
YAN Jiaxin,XU Siping,LI Fanglin. Geochemistry of the dysaerobic sedimentary environments of the Qixia Formation in Badong,Hubei[J]. Sedimentary Facies and Palaeogeography,1998,18(6):27−32.
[80] 陶振鹏. 贵州普安–晴隆一带晚二叠世煤层中微量、稀土元素富集特征研究[D]. 贵阳:贵州大学,2016.
TAO Zhenpeng. Enrichment characteristics of trace elements and rare earth elements in Late Permian coal from Pu’an and Qinglong coalfield,Guizhou Province[D]. Guiyang:Guizhou University,2016.
[81] 王双美. 青龙寺井田主采煤层古泥炭沼泽演化规律研究[J]. 煤炭科学技术,2021,49(3):181−188.
WANG Shuangmei. Study on evolution law of ancient peat swamp from main coal seam in Qinglongsi minefield[J]. Coal Science and Technology,2021,49(3):181−188.
[82] 王居里,郭健,刘忠奎,等. 滇东北峨眉山玄武岩区的沉积型铜矿床[J]. 矿床地质,2006,25(6):663−671.
WANG Juli,GUO Jian,LIU Zhongkui,et al. Sedimentary copper deposit in Emeishan basalts,northeastern Yunnan Province[J]. Mineral Deposits,2006,25(6):663−671.
[83] 程国繁,刘幼平,龙汉生,等. 贵州西部香炉山式铁矿成矿控制因素初步研究[J]. 地质科技情报,2017,36(4):113−122.
CHENG Guofan,LIU Youping,LONG Hansheng,et al. A preliminary study on ore–controlling factors of Xianglushan type iron deposits in western Guizhou,China[J]. Geological Science and Technology Information,2017,36(4):113−122.
[84] YANG Ruidong,WANG Wei,ZHANG Xiaodong,et al. A new type of rare earth elements deposit in weathering crust of Permian basalt in western Guizhou,NW China[J]. Journal of Rare Earths,2008,26(5):753−759.
[85] 王汝成,车旭东,邬斌,等. 中国铌钽锆铪资源[J]. 科学通报,2020,65(33):3763−3777.
WANG Rucheng,CHE Xudong,WU Bin,et al. Critical mineral resources of Nb,Ta,Zr,and Hf in China[J]. Chinese Science Bulletin,2020,65(33):3763−3777.
[86] DAI Shifeng,XIE Panpan,JIA Shaohui,et al. Enrichment of U–Re–V–Cr–Se and rare earth elements in the Late Permian coals of the Moxinpo coalfield,Chongqing,China:Genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews,2017,80:1−17.
[87] 李宝庆,庄新国,宁树正,等. 稀土–锆(铪)–铌(钽)–镓的活化、迁移和富集机理:以务正道地区上二叠统吴家坪组煤系为例[J]. 煤炭学报,2022,47(5):1822−1839.
LI Baoqing,ZHUANG Xinguo,NING Shuzheng,et al. Mobilization,migration,and enrichment mechanism of rare earth elements–Zr (Hf)–Nb (Ta)–Ga:A case study of coal–bearing strata within Upper Permian Wujiaping Formation in Wuzhengdao region[J]. Journal of China Coal Society,2022,47(5):1822−1839.
[88] 金超,刘浪涛,张小刚,等. 黔西北煤田晚二叠世煤关键金属Li–Nb–Ta富集特征及成因机制[J]. 地质学报,2024,98(8):2316−2335.
JIN Chao,LIU Langtao,ZHANG Xiaogang,et al. Characteristics and genetic mechanism of Li–Nb–Ta enrichment in Late Permian coal in the coalfield of northwestern Guizhou,southwest China[J]. Acta Geologica Sinica,2024,98(8):2316−2335.
[89] WANG Ning,DAI Shifeng,NECHAEV V P,et al. Isotopes of carbon and oxygen of siderite and their genetic indications for the Late Permian critical–metal tuffaceous deposits (Nb–Zr–REY–Ga) from Yunnan,southwestern China[J]. Chemical Geology,2022,592:120727.
[90] DAI Shifeng,NECHAEV V P,CHEKRYZHOV I Y,et al. A model for Nb–Zr–REE–Ga enrichment in Lopingian altered alkaline volcanic ashes:Key evidence of H–O isotopes[J]. Lithos,2018,302:359−369.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons