Coal Geology & Exploration
Abstract
Background Water disasters in mines are occasional accidents occurring due to the influence or triggered by mining-induced intense changes in geological bodies. The complexity, heterogeneity, and dynamics of geological bodies, coupled with the random and instantaneous nature of mining influence, lead to the uncertainty, instability, occasionality, and transience of water disasters in mines. Given that mine water monitoring and early warning serve as a prerequisite for advanced disaster prevention and control, their research and system construction hold great theoretical significance and practical value. Progress and Prospects Fighting against water disasters in mines is conducted throughout the development and utilization of coals. Starting from scratch, the monitoring and early warning of these disasters have undergone human experience-based identification, physical mechanism-guided information acquisition and identification, and intelligent monitoring and early warning driven by physics and data, with systematic transformation, industrial demonstration, and large-scale applications having been achieved presently. Significant advances have been made in relevant basic research, technological research and development, and system construction, enabling advanced early warning in some typical scenarios. These achievements underscore the belief that the prevention, control, and early warning of water disasters in mines can be achieved. However, the unclear physical mechanisms underlying the disasters lead to incomplete index systems, insufficient information acquisition, and inaccurate assessment and prediction. These issues tend to result in frequent occurrences of missed, false, and inaccurate early warnings. Consequently, the overall goal of advanced and precise early warnings has not been fulfilled for a vast majority of scenarios, facing serious challenges. Based on the review of the advances in research, this study proposed a system architecture for the monitoring and early warning of mine water, followed by theoretical discussions about four key technologies: the index system, information perception (monitoring), evaluation and prediction, and identification and early warning. Accordingly, this study summarized the connotations and interrelationships of these technologies, as well as relevant challenges. Furthermore, it pointed out that the monitoring and early warning should shift from methodologies based on physical mechanisms to the physics-data dual-driving mechanism. This overall development direction includes seven specific directions: constructing a comprehensive index system, optimizing the layout of the perception system, total-factor joint monitoring of multiple disasters, establishing geological-hydrological models + deep learning-based prediction models, setting early warning rules and factor thresholds, real-time and advance warning, and image monitoring and big data processing. These directions will lay the foundation for theoretical research, technological research and development, and system construction in this field.
Keywords
water disaster in mines, monitoring and early warning system, index system, information perception (monitoring), evaluation and prediction, advance warning
DOI
10.12363/issn.1001-1986.25.02.0105
Recommended Citation
YIN Shangxian, DING Yingying, LIAN Huiqing,
et al.
(2025)
"Research on monitoring and early warning systems for mine water: Progress and prospects,"
Coal Geology & Exploration: Vol. 53:
Iss.
7, Article 8.
DOI: 10.12363/issn.1001-1986.25.02.0105
Available at:
https://cge.researchcommons.org/journal/vol53/iss7/8
Reference
[1] 武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.
WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.
[2] 尹尚先,王玉国,李文生. 矿井水灾害:原因·对策·出路[J]. 煤田地质与勘探,2023,51(1):214−221.
YIN Shangxian,WANG Yuguo,LI Wensheng. Cause,countermeasures and solutions of water hazards in coal mines in China[J]. Coal Geology & Exploration,2023,51(1):214−221.
[3] JIANG Lizheng,LI Yanbin. Research on coal mine safety monitoring data storage based on HBase[J]. Journal of Physics:Conference Series,2020,1693(1):012036.
[4] 孙继平,靳春海. 矿井水灾感知与水源判定方法研究[J]. 工矿自动化,2019,45(4):1−5.
SUN Jiping,JIN Chunhai. Research on methods of mine flood perception and water source determination[J]. Industry and Mine Automation,2019,45(4):1−5.
[5] 连会青,李启兴,王瑞,等. 基于深度学习的LSTM–GRU复合模型矿井涌水量预测方法研究[J]. 煤矿安全,2024,55(9):166−172.
LIAN Huiqing,LI Qixing,WANG Rui,et al. Research on mine water inflow prediction method of LSTM–GRU composite model based on deep learning[J]. Safety in Coal Mines,2024,55(9):166−172.
[6] 张丐桌. 基于机器学习的矿井水害风险评估及灾变推演模拟研究:以开滦矿区为例[D]. 北京:中国矿业大学(北京),2024.
[7] XIA Xu,CHEN Zhigang,WEI Wei. Research on monitoring and prewarning system of accident in the coal mine based on big data[J]. Scientific Programming,2018,2018:9308742. doi:10.1155.12018/9308742.
[8] 曾一凡,朱慧聪,武强,等. 我国不同类别煤层底板水害致灾机理与防控远景导向[J]. 煤炭学报,2025,50(2):1073−1099.
ZENG Yifan,ZHU Huicong,WU Qiang,et al. Disaster–causing mechanism and prevention and control vision orientation of different types of coal seam floor water disasters in China[J]. Journal of China Coal Society,2025,50(2):1073−1099.
[9] 曾一凡,孟世豪,武强,等. 天窗补给型衍生式矿井动力突水模式及其评价与治理技术[J]. 煤炭学报,2023,48(10):3776−3788.
ZENG Yifan,MENG Shihao,WU Qiang,et al. Derivative mine dynamic water inrush mode of skylight leakage and its evaluation and control technology system[J]. Journal of China Coal Society,2023,48(10):3776−3788.
[10] 詹君梅. 法国CTT63/40U井下环境安全集中监测装置[J]. 煤矿自动化,1983,9(4):51−54.
[11] 张香亭. 英国煤矿作业用的 MINOS 远距离监控系统[J]. 煤矿自动化,1978,4(3):34−38.
[12] 赵志文. 日本南大夕张煤矿的远距离监控系统[J]. 煤矿自动化,1978,4(4):29−32.
[13] MOORE S F. Estimation theory applications to design of water quality monitoring systems[J]. Journal of the Hydraulics Division,1973,99(5):815−831.
[14] EINARSON M D,CHERRY J A. A new multilevel ground water monitoring system using multichannel tubing[J]. Ground Water Monitoring & Remediation,2002,22(4):52−65.
[15] BÍRÓ T,BURAI P,LÉNÁRT C S. Development of regional groundwater monitoring system based on integrated database in Bihar–Plain[J]. Cereal Research Communications,2006,34(1):13−16.
[16] DAS M,SEMY K. Monitoring the dynamics of acid mine drainage affected stream surface water hydrochemistry at Jaintia Hills,Meghalaya,India[J]. Environmental Science and Pollution Research,2023,30(30):75489−75499.
[17] SHOKRI B J,SHAFAEI F,ARDEJANI F D,et al. Use of time–lapse 2D and 3D geoelectrical inverse models for monitoring acid mine drainage:A case study[J]. Soil and Sediment Contamination,2023,32(4):376−399.
[18] YUGAY V,MEKHTIYEV A,MADI P,et al. Fiber–optic system for monitoring pressure changes on mine support elements[J]. Sensors,2022,22(5):1735.
[19] MORE K S,WOLKERSDORFER C,KANG Ning,et al. Automated measurement systems in mine water management and mine workings:A review of potential methods[J]. Water Resources and Industry,2020,24:100136.
[20] MSHA aggressively assessing,Testing communication & locating devices for underground mines[J]. Coal Age,2006,111(3):6.
[21] MORE K S,WOLKERSDORFER C. Predicting and forecasting mine water parameters using a hybrid intelligent system[J]. Water Resources Management,2022,36(8):2813−2826.
[22] GEE D,SOWTER A,ATHAB A,et al. Remote monitoring of minewater rebound and environmental risk using satellite radar interferometry[J]. Science of the Total Environment,2023,857:159272.
[23] 易航,温联星. 卫星重力监测美国本土地下水变化及干旱情况[C]//2014年中国地球科学联合学术年会——专题3:地球重力场及其地学应用论文集. 北京:中国地球科学联合学术年会,2014:390.
[24] 尹尚先,姚辉,梁满玉,等. 突水系数60年:面临困境及发展方向[J]. 煤炭学报,2025,50(1):600−609.
YIN Shangxian,YAO Hui,LIANG Manyu,et al. 60 years of investigation on water inrush coefficient:Challenges faced and development directions[J]. Journal of China Coal Society,2025,50(1):600−609.
[25] 唐允,潘尚达. 煤矿自动化[J]. 煤炭科学技术,1987,15(4):161−167.
[26] 刘作述,郦建人,叶桂森. 国外煤矿自动化技术的发展动向[J]. 煤炭科学技术,1981,9(1):55−57.
[27] 王经明,龚乃勤,赵开泉,等. 煤层底板突水的自动化监测技术及其应用[J]. 煤矿设计,1998,30(10):32−34.
[28] 王经明,董书宁,刘其声. 煤矿突水灾害的预警原理及其应用[C]//中国煤炭学会矿井地质专业委员会、中国煤炭工业劳动保护科学技术学会水害防治专业委员会2005年学术交流会论文集. 西安,2005:5–8.
[29] 谢炳. 厚层灰岩水体下采煤水情动态监测与分析[J]. 煤矿安全,1989,20(12):6−9.
[30] 谷守禄,鲁远祥. 煤矿监控系统的发展概况及趋势[J]. 中国安全科学学报,1997,7(增刊1):13–16.
GU Shoulu,LU Yuanxiang. Recent development and trend on safety monitor–control system for coal mine[J]. China Safety Science Journal,1997,7(Sup.1):13–16.
[31] 王经明. 煤矿水害监测预警系统的研究[C]//中国煤炭学会煤矿安全专业委员会2004年学术年会论文集. 三亚:中国煤炭学会煤矿安全专业委员会,2004:115–118.
[32] 尹尚先. 矿井水预测探查及预警保障技术[J]. 中国煤炭地质,2010,22(1):37−40.
YIN Shangxian. Mine water advanced exploration and early–warning safeguarding techniques[J]. Coal Geology of China,2010,22(1):37−40.
[33] 董书宁,王经明,高智联,等. 煤层底板突水监测系统的开发及应用[J]. 煤炭工程师,1998,25(6):12−14.
DONG Shuning,WANG Jingming,GAO Zhilian,et al. Development and application of monitoring system for water inrush from seam floor[J]. Coal Engineer,1998,25(6):12−14.
[34] 翟培合. 采场底板破坏及底板水动态监测系统研究:电阻率CT技术在煤矿中的开发应用[D]. 青岛:山东科技大学,2005.
[35] 郑纲,门玉明,庞西岐. 东庞矿9103工作面底板突水前兆实时监测技术[J]. 煤炭科学技术,2004,32(3):4−7.
ZHENG Gang,MEN Yuming,PANG Xiqi. On time monitoring and measuring technology before water inrush disaster occurred from floor of No. 9103 coal mining face in Dongpang mine[J]. Coal Science and Technology,2004,32(3):4−7.
[36] 尹尚先,王尚旭,武强. 陷落柱突水模式及理论判据[J]. 岩石力学与工程学报,2004,23(6):964−968.
YIN Shangxian,WANG Shangxu,WU Qiang. Water inrush patterns and theoretic criteria of karstic collapse columns[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(6):964−968.
[37] 尹尚先. 矿井突(涌)水预测及预警研究[J]. 华北科技学院学报,2009,6(4):1−6.
YIN Shangxian. The study of forecasting and warning about water inrush from the coal mines[J]. Journal of North China Institute of Science and Technology,2009,6(4):1−6.
[38] 国家“十一五”科技支撑计划. 矿井突水灾害预警系统的研究[R]. 太原:山西省煤炭地质局,2010.
[39] 靳德武. 煤矿突水灾害实时监测预警系统[R]. 西安:煤炭科学研究总院西安分院,2007-10-17.
[40] 张党育. 微震监测技术在煤矿防治水中的应用与研究[R]. 邯郸:峰峰集团有限公司,2007-11-11.
[41] YANG Chengxiang,LUO Zhouquan,HU Guobin,et al. Application of a microseismic monitoring system in deep mining[J]. Journal of University of Science and Technology Beijing,2007,14(1):6−8.
[42] 王勃,刘盛东,张朋. 采用网络并行电法仪进行煤矿底板动态监测[J]. 中国煤炭地质,2009,21(3):53−57.
WANG Bo,LIU Shengdong,ZHANG Peng. Application of network parallel electrical instrument on dynamic coal floor monitoring[J]. Coal Geology of China,2009,21(3):53−57.
[43] 焦保国. 矿井突水灾害预警系统的设计与实现[D]. 大连:大连理工大学,2014.
JIAO Baoguo. The design and implementation of mine water inrush disaster warning system[D]. Dalian:Dalian University of Technology,2014.
[44] 杜志立. 基于物联网的矿井突水监测网络优化布设方法研究与应用[D]. 北京:中国矿业大学(北京),2022.
DU Zhili. Research and application of optimal location method of mine water inrush monitoring network based on Internet of Things[D]. Beijing:China University of Mining & Technology (Beijing),2022.
[45] 张平松,焦文杰,李圣林. 采煤工作面地质条件透明化技术现状与分析[J]. 智能矿山,2023,4(6):2−13.
[46] 冯现大,李树忱,李术才,等. 矿井突水模型试验中光纤传感器的研制及其应用[J]. 煤炭学报,2010,35(2):283−287.
FENG Xianda,LI Shuchen,LI Shucai,et al. The development of fiber optic Bragg grating sensors and their applications to the mine water–inrush model test[J]. Journal of China Coal Society,2010,35(2):283−287.
[47] 赵阳升. 基于多含水层水力联系的奥灰突水监测预报成套技术[R]. 长冶:山西潞安集团余吾煤业有限责任公司,2011-05-21.
[48] 谢兴楠,叶根喜. 测井“静态”探测与微震“动态”监测技术在矿井突水综合预警中的应用[J]. 中国矿业,2012,21(1):110−114.
XIE Xingnan,YE Genxi. Application of integrated prediction of water inrushing based on static geophysical logging probe and dynamic microseismic monitoring[J]. China Mining Magazine,2012,21(1):110−114.
[49] 朱宗奎,徐智敏,孙亚军. 矿井水害的临突监测指标及预警模型[J]. 煤矿安全,2014,45(1):170−172.
ZHU Zongkui,XU Zhimin,SUN Yajun. Critical water inrush monitoring index and early–warning model of mine water disaster[J]. Safety in Coal Mines,2014,45(1):170−172.
[50] 董东林. 煤层顶底板突水防治新技术与应用[R]. 北京:中国矿业大学,2012-03-14.
[51] 连会青,晏涛,尹尚先,等. 基于透明水文地质模型的工作面顶板水害预警研究[J]. 煤炭科学技术,2025,53(1):259−271.
LIAN Huiqing,YAN Tao,YIN Shangxian,et al. Research on early warning of roof water inrush in working faces based on a transparent hydrogeological model[J]. Coal Science and Technology,2025,53(1):259−271.
[52] 吴志春,郭福生,林子瑜,等. 三维地质建模中的多源数据融合技术与方法[J]. 吉林大学学报(地球科学版),2016,46(6):1895−1913.
WU Zhichun,GUO Fusheng,LIN Ziyu,et al. Technology and method of multi-data merging in 3D geologicamodeling[J]. Journal of Jilin University (Earth Science Edition),2016,46(6):1895−1913.
[53] 李宏达,吴志春,柏瑞,等. 复杂脉状矿体精细化三维建模方法探讨[J/OL]. 地质科技通报,2024:1–15 (2024-04-12)[2025-02-15]. https://doi.org/10.19509/j.cnki.dzkq.tb20240050.
LI Hongda,WU Zhichun,BAI Rui,et al. Discussion on fine 3D modeling method of complex vein ore body[J/OL]. Bulletin of Geological Science and Technology,2024:1–15 (2024-04-12)[2025-02-15]. https://doi.org/10.19509/j.cnki.dzkq.tb20240050.
[54] 李张明,练继建,戚蓝. 地震波层析成像技术探测复杂岩体结构应用研究[J]. 岩石力学与工程学报,2004,23(1):107−111.
LI Zhangming,LIAN Jijian,QI Lan. Study on detection of complex rock structure by CT technique of seismic wave[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(1):107−111.
[55] 连会青,杨俊文,韩瑞刚,等. 基于“情景–应对”的矿井水灾事故应急决策机制[J]. 煤田地质与勘探,2020,48(1):120−128.
LIAN Huiqing,YANG Junwen,HAN Ruigang,et al. “Scenario–response”–based emergency decision–making mechanism of mine water inrush disaster[J]. Coal Geology & Exploration,2020,48(1):120−128.
[56] 王靖. 地震电磁联合数据采集实时监测与控制软件研发[D]. 北京:中国地质大学(北京),2023.
WANG Jing. Development of real–time monitoring and control software for joint seismic and electromagnetic data acquisition[D]. Beijing:China University of Geosciences (Beijing),2023.
[57] 尹慧超. 矿井水害风险动态评估及系统开发[D]. 北京:中国矿业大学(北京),2023.
YIN Huichao. Mine water inrush risk dynamic evaluation and system development[D]. Beijing:China University of Mining & Technology (Beijing),2023.
[58] 华北科技学院课题组. 煤矿水害事故风险动态分析评估系统项目[R]. 北京:国家煤矿安全监察局,2020.
[59] YIN Huichao,ZHANG Gaizhuo,WU Qiang,et al. A deep learning–based data–driven approach for predicting mining water inrush from coal seam floor using microseismic monitoring data[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61:4504815.
[60] YANG Zhao,DONG Donglin,CHEN Yuqi,et al. Water inflow forecasting based on visual MODFLOW and GS–SARIMA–LSTM methods[J]. Water,2024,16(19):2749.
[61] 乔伟,靳德武,王皓,等. 基于云服务的煤矿水害监测大数据智能预警平台构建[J]. 煤炭学报,2020,45(7):2619−2627.
QIAO Wei,JIN Dewu,WANG Hao,et al. Development of big data intelligent early warning platform for coal mine water hazard monitoring based on cloud service[J]. Journal of China Coal Society,2020,45(7):2619−2627.
[62] 刘盛东,杨彩,章俊,等. 矿井微震与电法耦合监测技术[J]. 煤炭学报,2024,49(1):586−600.
LIU Shengdong,YANG Cai,ZHANG Jun,et al. Mine microseismic and electrical coupling monitoring technology[J]. Journal of China Coal Society,2024,49(1):586−600.
[63] YIN Huichao,ZHANG Gaizhuo,WU Qiang,et al. Transfer learning with transformer–based models for mine water inrush prediction:A multivariate analysis using sparse and imbalanced monitoring data[J]. Mine Water and the Environment,2024,43(4):707−726.
[64] 张立亚,马征,郝博南,等. 矿用5G通信信号传输的干扰监测技术[J]. 工矿自动化,2024,50(11):62−69.
ZHANG Liya,MA Zheng,HAO Bonan,et al. Interference monitoring technology for mine–used 5G communication signal transmission[J]. Journal of Mine Automation,2024,50(11):62−69.
[65] 刘德民,尹尚先,连会青,等. 煤矿底板突水定量预警准则及预警系统研究[J]. 煤炭工程,2019,51(4):16−20.
LIU Demin,YIN Shangxian,LIAN Huiqing,et al. Study on quantitative warning criteria and early warning system for water inrush from coal floor[J]. Coal Engineering,2019,51(4):16−20.
[66] LIU Xiaomin,LIU Haiyan,WAN Zheng,et al. Study on evaluation index system of sustainable development of mine water resources based on PSO–AHP model and fuzzy comprehensive evaluation[J]. Journal of Intelligent & Fuzzy Systems,2021,41(3):4253−4264.
[67] 张雁,刘英锋,吕明达. 煤矿突水监测预警系统中的关键技术[J]. 煤田地质与勘探,2012,40(4):60−62.
ZHANG Yan,LIU Yingfeng,LYU Mingda. Key technologies on mine water inrush monitoring and warning system[J]. Coal Geology & Exploration,2012,40(4):60−62.
[68] WANG Yue,WANG Pengyu,YI Xiaofeng. Development and experimental study of a long–time monitoring system for mine water damage electrical information[J]. Journal of Physics:Conference Series,2023,2520(1):012029.
[69] JIN Baoquan,ZHAO Yuanpeng,LI Jin. Coal mine water monitoring system based on CAN bus[J]. International Journal of Advancements in Computing Technology,2012,4(23):309−318.
[70] 陆睿,尹尚先,王玉国,等. 基于GMS的深部煤层开采工作面涌水量预测[J]. 煤矿安全,2025,56(1):164−170.
LU Rui,YIN Shangxian,WANG Yuguo,et al. Prediction of water inflow in deep coal seam mining face based onGMS[J]. Safety in Coal Mines,2025,56(1):164−170.
[71] 尹尚先,徐斌,尹慧超,等. 矿井水防治学科基本架构及内涵[J]. 煤炭科学技术,2023,51(7):24−35.
YIN Shangxian,XU Bin,YIN Huichao,et al. Basic structure and connotation of mine water prevention and control discipline[J]. Coal Science and Technology,2023,51(7):24−35.
[72] 杨艺. 亭南煤矿水害风险预警指标和预警方法研究[D]. 廊坊:华北科技学院,2022.
YANG Yi. Study on early warning index and method of water disaster risk monitoring in Tingnan coal mine[D]. Langfang:North China Institute of Science and Technology,2022.
[73] 丁莹莹,尹尚先,连会青,等. 基于SSA–CG–Attention模型的多因素采煤工作面涌水量预测[J]. 煤田地质与勘探,2024,52(4):111−119.
DING Yingying,YIN Shangxian,LIAN Huiqing,et al. Prediction of mine water inflow along mining faces using the SSA–CG–Attention multifactor model[J]. Coal Geology & Exploration,2024,52(4):111−119.
[74] DING Yingying,YIN Shangxian,DAI Zhenxue,et al. Multi–factor prediction of water inflow from the working face based on an improved SSA–RG–MHA model[J]. Water,2024,16(23):3390.
[75] 犹梦洁. 基于文本挖掘的煤矿安全风险识别与评价研究[D]. 徐州:中国矿业大学,2022.
YOU Mengjie. Research on safety risk identification and assessment of coal mine based on text mining[D]. Xuzhou:China University of Mining and Technology,2022.
[76] LIAN Huiqing,ZHANG Qing,YIN Shangxian,et al. Integrating microseismic monitoring for predicting water inrush hazards in coal mines[J]. Water,2024,16(8):1168.
[77] 樊鑫,程建远,栗升,等. 煤矿微震监测系统在回采工作面顶板水害防治中的应用[J]. 煤田地质与勘探,2024,52(6):115−127.
FAN Xin,CHENG Jianyuan,LI Sheng,et al. Application of microseismic monitoring system for coal mines to the prevention and control of water disasters on working face roofs[J]. Coal Geology & Exploration,2024,52(6):115−127.
[78] YIN Huichao,WU Qiang,YIN Shangxian,et al. Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short–term memory and isolation forest[J]. Journal of Hydrology,2023,616:128813.
[79] YIN Huichao,ZHANG Gaizhuo,WU Qiang,et al. Unraveling overlying rock fracturing evolvement for mining water inflow channel prediction:A spatiotemporal analysis using ConvLSTM image reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing,2024,62:4510417.
[80] 姚辉,尹慧超,梁满玉,等. 机器学习方法在矿井水防治理论体系研究中的应用思考[J]. 煤田地质与勘探,2024,52(5):107−117.
YAO Hui,YIN Huichao,LIANG Manyu,et al. Some reflections on the application of machine learning to research into the theoretical system of mine water prevention and control[J]. Coal Geology & Exploration,2024,52(5):107−117.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons