Coal Geology & Exploration
Abstract
Objective The identification and assessment of sandstone aquifers in coal seam roofs play a vital role in the safe mining of mines. Investigating the rock physics and amplitude variation with incidence and azimuth (AVAz) responses of these sandstone aquifers is critical to the prevention and control of water hazards in mines. Methods By integrating rock physical models Voigt-Reuss-Hill (VRH), differential equivalent medium (DEM), Hudson, and Wood, as well as Gassmann’s anisotropic fluid substitution theory, this study proposed a rock physics modeling method for fractured sandstones of the horizontal transversely isotropic (HTI) media type (hereafter referred to as HTI sandstones). Using this method, this study explored the impacts of fracture parameters and water saturation on seismic rock physical responses of the sandstones. Accordingly, it constructed a two-layer theoretical forward model, calculated the reflection coefficients of HTI sandstones, and analyzed the relationships of the reflection coefficients with the fracture density and water saturation. Results and Conclusions The rock physics modeling results indicate that a higher fracture density corresponded to lower compressional and shear wave (also referred to as P- and S-wave) velocities and stronger anisotropy. As the water saturation increased, the P-wave velocity decreased initially and then increased, whereas the S-wave velocity decreased slightly. Concurrently, with an increase in the water saturation, anisotropy coefficients $ {\varepsilon ^{({\text{v}})}} $ and $ {\delta ^{({\text{v}})}} $ increased, while anisotropy coefficient $ {\gamma ^{({\text{v}})}} $remained unchanged. The AVAz forward modeling results indicate that a higher fracture density was associated with more pronounced azimuthal anisotropy of the sandstones’ reflection coefficients and larger differences in P-wave reflection coefficients between saturated and dry sandstones. The saturation state of sandstones was the most distinguishable in the case where the angle of incidence and azimuth were 40° and 0°, respectively. Indicators for sensitivity to the fracture density and water saturation of sandstone aquifers included the fitted slope and intercept of the AVAz curves, as well as the isotropic and anisotropic components of the amplitude versus offset (AVO) gradients. The results of this study provide a theoretical basis for the identification and assessment of sandstone aquifers.
Keywords
water-bearing sandstones in a coal seam roof, rock physics modeling, elastic parameter, amplitude variation with incidence and azimuth (AVAz), prevention and control of mine water hazard
DOI
10.12363/issn.1001-1986.25.02.0082
Recommended Citation
Y C.
(2025)
"Seismic anisotropy of sandstone aquifers in coal seam roofs,"
Coal Geology & Exploration: Vol. 53:
Iss.
7, Article 7.
DOI: 10.12363/issn.1001-1986.25.02.0082
Available at:
https://cge.researchcommons.org/journal/vol53/iss7/7
Reference
[1] 闫顺尚,王玲,董方营,等. 基于电–磁法联合勘探的火烧区范围及富水性的预测[J]. 煤田地质与勘探,2022,50(2):132−139.
YAN Shunshang,WANG Ling,DONG Fangying,et al. Prediction of burnt rock areas and water abundance based on the Electrical–Magnetic method[J]. Coal Geology & Exploration,2022,50(2):132−139.
[2] WEN Laifu,CHENG Jiulong,HUANG Shaohua,et al. Review of geophysical exploration on mined–out areas and water abundance[J]. Journal of Environmental and Engineering Geophysics,2019,24(1):129−143.
[3] ZHAO Luanxiao,ZOU Caifeng,CHEN Yuanyuan,et al. Fluid and lithofacies prediction based on integration of well–log data and seismic inversion:A machine–learning approach[J]. Geophysics,2021,86(4):M151−M165.
[4] LIU Ling,TANG Dazhen,XU Hao,et al. Reservoir prediction of deep–water turbidite sandstones with seismic lithofacies control:A case study in the C block of lower Congo Basin[J]. Marine and Petroleum Geology,2016,71:1−11.
[5] YAN Binpeng,QIAN Longlong,ZHAO Jiaqi,et al. Fault identification based on W–net in 3–D seismic images[J]. IEEE Geoscience and Remote Sensing Letters,2024,21:7504805.
[6] SHE Jiasheng,ZOU Guangui,GONG Fei,et al. Predicting sandstone water abundance using seismic dispersion attribute inversion:A case study of Yuwang coal mine,China[J]. Geophysical Prospecting,2024,72(6):2357−2376.
[7] 王苏健,冯洁,侯恩科,等. 砂岩微观孔隙结构类型及其对含水层富水性的影响:以柠条塔井田为例[J]. 煤炭学报,2020,45(9):3236−3244.
WANG Sujian,FENG Jie,HOU Enke,et al. Microscopic pore structure types of sandstone and its effects on aquifer water abundance:Taking in Ningtiaota coal mine as an example[J]. Journal of China Coal Society,2020,45(9):3236−3244.
[8] BAIROS K,QUINN P,PEHME P,et al. Enumerating hydraulically active fractures using multiple,high–resolution datasets to inform plume transport in a sandstone aquifer[J]. Journal of Hydrology,2023,619:129362.
[9] 印兴耀,刘倩. 致密储层各向异性地震岩石物理建模及应用[J]. 中国石油大学学报(自然科学版),2016,40(2):52−58.
YIN Xingyao,LIU Qian. Anisotropic rock physics modeling of tight sandstone and applications[J]. Journal of China University of Petroleum (Edition of Natural Science),2016,40(2):52−58.
[10] BA Jing,HU Peng,TAN Wenhui,et al. Brittle mineral prediction based on rock–physics modelling for tight oil reservoir rocks[J]. Journal of Geophysics and Engineering,2021,18(6):970−983.
[11] HUSSEIN A A A,ZHAO Luanxiao,CHEN Yuanyuan,et al. Rock physics characteristics of marine sediments in the South China Sea:The link between the geological factors and elastic properties[J]. Frontiers in Earth Science,2023,10:931611.
[12] 刘显贵,符超,尹海洋,等. 神东矿区顶板富水砂岩的地震岩石物理特征[J]. 地球物理学进展,2024,39(5):1850−1856.
LIU Xiangui,FU Chao,YIN Haiyang,et al. Seismic rock physics characteristics of water–rich roof sandstone in the Shendong mining area[J]. Progress in Geophysics,2024,39(5):1850−1856.
[13] 康红普,林健,颜立新,等. 山西煤矿矿区井下地应力场分布特征研究[J]. 地球物理学报,2009,52(7):1782−1792.
KANG Hongpu,LIN Jian,YAN Lixin,et al. Study on characteristics of underground in–situ stress distribution in Shanxi coal mining fields[J]. Chinese Journal of Geophysics,2009,52(7):1782−1792.
[14] 康红普,伊丙鼎,高富强,等. 中国煤矿井下地应力数据库及地应力分布规律[J]. 煤炭学报,2019,44(1):23−33.
KANG Hongpu,YI Bingding,GAO Fuqiang,et al. Database and characteristics of underground in–situ stress distribution in Chinese coal mines[J]. Journal of China Coal Society,2019,44(1):23−33.
[15] 刘百红,杨强,石展,等. HTI介质的方位AVO正演研究[J]. 石油物探,2010,49(3):232−239.
LIU Baihong,YANG Qiang,SHI Zhan,et al. Azimuthal AVO simulation for HTI media[J]. Geophysical Prospecting for Petroleum,2010,49(3):232−239.
[16] 陈同俊,王新,崔若飞. 基于方位AVO正演的HTI构造煤裂隙可探测性分析[J]. 煤炭学报,2010,35(4):640−644.
CHEN Tongjun,WANG Xin,CUI Ruofei. The detectability analysis on HTI tectonic coal cracks by azimuthal AVO’s forward modeling[J]. Journal of China Coal Society,2010,35(4):640−644.
[17] 卢勇旭,彭苏萍,杜文凤,等. 各向异性薄煤层纵波AVAZ分析[J]. 煤炭学报,2016,41(12):3095−3100.
LU Yongxu,PENG Suping,DU Wenfeng,et al. P–wave AVAZ analysis of anisotropic thin coal bed[J]. Journal of China Coal Society,2016,41(12):3095−3100.
[18] 李勤,马随波,赵斌. 各向异性煤层裂隙流体因子及地震波速度响应[J]. 煤田地质与勘探,2019,47(6):167−173.
LI Qin,MA Suibo,ZHAO Bin. Fluid factor of fracture and seismic velocity response in anisotropic coal beds[J]. Coal Geology & Exploration,2019,47(6):167−173.
[19] 李勤,王玮,马随波,等. HTI煤层方位AVO响应与裂隙识别[J]. 地球物理学进展,2021,36(1):178−186.
LI Qin,WANG Wei,MA Suibo,et al. Analysis of azimuthal AVO response and crack identification on HTI tectonic coal[J]. Progress in Geophysics,2021,36(1):178−186.
[20] 吴海波,刘钦节,王进朝,等. HTI型煤层裂缝参数的地震AVOA响应正演模拟[J]. 煤田地质与勘探,2023,51(5):146−154.
WU Haibo,LIU Qinjie,WANG Jinchao,et al. Forward modeling of amplitude variation with offset and azimuth (AVOA) response for fracture parameters of horizontal transversely isotropic coal seams[J]. Coal Geology & Exploration,2023,51(5):146−154.
[21] TIAN Yajun,STOVAS A,GAO Jinghuai,et al. Tight sandstone gas reservoir characterization via amplitude–versus–offset attributes[J]. Geophysical Prospecting,2023,71(6):1030−1046.
[22] 王永建,潘建旭,刘咸卫. 淮北煤田煤成气低渗砂岩储层综合评价研究[J]. 煤炭科学技术,2019,47(5):187−192.
WANG Yongjian,PAN Jianxu,LIU Xianwei. Study on comprehensive evaluation of low permeability sandstone reservoirs of coal–derived gas in Huaibei coalfield[J]. Coal Science and Technology,2019,47(5):187−192.
[23] 李建武. 沁水煤田石炭二叠系砂岩储集性研究[J]. 煤田地质与勘探,1989,17(5):14−17.
[24] 张金强,刘振峰,刘喜武,等. 致密砂岩储层自适应岩石物理建模方法[J]. 石油地球物理勘探,2021,56(4):792−800.
ZHANG Jinqiang,LIU Zhenfeng,LIU Xiwu,et al. Self–adaptive rock physics modeling method for tight sandstone reservoirs[J]. Oil Geophysical Prospecting,2021,56(4):792−800.
[25] AVSETH P,JOHANSEN T A,BAKHORJI A,et al. Rock–physics modeling guided by depositional and burial history in low–to–intermediate–porosity sandstones[J]. Geophysics,2014,79(2):D115−D121.
[26] ZHOU You,ZHANG Guangzhi,LIU Junzhou. Modeling method to characterize the pore structure of fractured tight reservoirs[J]. Applied Sciences,2022,12(4):2078.
[27] HUDSON J A. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal International,1981,64(1):133−150.
[28] WOOD A B,LINDSAY R B. A textbook of sound[J]. Physics Today,1956,9(11):37.
[29] GASSMANN F. Uber die elastizitat poroser medien[J]. Veirteljahrsschrift der naturforschenden gesellschaft in zzirich,1951,96:1–23.
[30] THOMSEN L. Weak elastic anisotropy[J]. Geophysics,1986,51(10):1954−1966.
[31] RÜGER A. Variation of P–wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics,1998,63(3):935−947.
[32] RÜGER A. P–wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry[J]. Geophysics,1997,62(3):713−722.
[33] MAVKO G,MUKERJI T,DVORKIN J. The rock physics handbook[M]. Cambridge:Cambridge University Press,2009.
[34] 甘其刚,杨振武,彭大钧. 振幅随方位角变化裂缝检测技术及其应用[J]. 石油物探,2004,43(4):373−376.
GAN Qigang,YANG Zhenwu,PENG Dajun. AVA fracture detection and its application in JM area[J]. Geophysical Prospecting for Petroleum,2004,43(4):373−376.
[35] AJAZ M,OUYANG Fang,WANG Guihai,et al. Fluid identification and effective fracture prediction based on frequency–dependent AVOAz inversion for fractured reservoirs[J]. Petroleum Science,2021,18(4):1069−1085.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons