Coal Geology & Exploration
Abstract
Objective The Dongsheng coalfield exhibits various types of mine water hazards, complex water filling mechanisms, and high water inflow with high total dissolved solids (TDS) content in mining areas. These characteristics pose challenges to the comprehensive utilization of mine water, severely restricting the safe, green, and efficient coal mining in the coalfield. Methods This study aims to reveal the roof water filling characteristics of the Dongsheng coalfield and enhance the comprehensive utilization of mine water. Using methods including statistical analysis of drilling data, analytic hierarchy process, and hydrochemical tests, this study analyzed the strata, spatial distribution of aquifers, and the spatial configuration of aquifers and coal seams to be mined in the Dongsheng coalfield. Accordingly, it explored the characteristics of roof water hazards, the hydrochemical characteristics of mine water, and the ways of the reutilization of mine water.Results and Conclusions With an increase in the burial depth of coal seams, the overall water filling intensity of mines in the Dongsheng coalfield gradually increases from northeast to southwest. This is primarily attributed to the aquifers of the Jurassic Zhiluo Formation. Mining areas like Shendong and Wanli suffer various roof water hazards in shallowly buried, thin bedrocks. In contrast, mining areas like Khujirt and Nalinhe in the west are subjected to roof water hazards of single types in thick sandstones. The overall TDS content of mine water gradually increases from northeast to southwest with the burial depth of coal seams. The primary cause of this TDS content variation is that the shallowly buried zones are prone to be recharged by the Quaternary phreatic aquifers, whereas aquifers in the deep parts primarily receive lateral recharge and exhibit slow runoff. The comprehensive utilization of mine water in the Dongsheng coalfield can be divided into four modes: quality-based cascade utilization of water resources mines, coordinated allocation of water resources among mines, coordinated water purification and utilization of coal mines and chemical industry, and mining area-agriculture-ecology combined allocation and utilization of water resources. These mine water utilization modes can effectively reduce the demand of relevant water consumption sectors for water resources from surface and groundwater systems. This will help save at least 3 579.16×104 m3 of water resources annually.
Keywords
mine water, roof water hazard, hydrochemical characteristic, reutilization mode, Dongsheng coalfield
DOI
10.12363/issn.1001-1986.25.04.0274
Recommended Citation
HUANG Haiyu, DING Xiang, LIU Xi,
et al.
(2025)
"Differential roof water hazards and comprehensive utilization of mine water in the Dongsheng coalfield,"
Coal Geology & Exploration: Vol. 53:
Iss.
7, Article 5.
DOI: 10.12363/issn.1001-1986.25.04.0274
Available at:
https://cge.researchcommons.org/journal/vol53/iss7/5
Reference
[1] 中国煤田地质总局. 鄂尔多斯盆地聚煤规律及煤炭资源评价[M]. 北京:煤炭工业出版社,1996.
[2] 马秀芬,翟立娟,傅耀军,等. 鄂尔多斯盆地煤炭基地含水层及其保护研究[J]. 中国煤炭地质,2012,24(8):36−42.
MA Xiufen,ZHAI Lijuan,FU Yaojun,et al. A study on aquifers and their protection in Ordos Basin coal base[J]. Coal Geology of China,2012,24(8):36−42.
[3] 刘洋. 突水溃沙通道分区及发育高度研究[J]. 西安科技大学学报,2015,35(1):72−77.
LIU Yang. Study on development height and the partition of water and sand inrush channel[J]. Journal of Xi’an University of Science and Technology,2015,35(1):72−77.
[4] 尹尚先,王玉国,李文生. 矿井水灾害:原因·对策·出路[J]. 煤田地质与勘探,2023,51(1):214−221.
YIN Shangxian,WANG Yuguo,LI Wensheng. Cause,countermeasures and solutions of water hazards in coal mines in China[J]. Coal Geology & Exploration,2023,51(1):214−221.
[5] 缪协兴,王长申,白海波. 神东矿区煤矿水害类型及水文地质特征分析[J]. 采矿与安全工程学报,2010,27(3):285−291.
MIAO Xiexing,WANG Changshen,BAI Haibo. Hydrogeologic characteristics of mine water hazards in Shendong mining area[J]. Journal of Mining & Safety Engineering,2010,27(3):285−291.
[6] 李东,刘生优,张光德,等. 鄂尔多斯盆地北部典型顶板水害特征及其防治技术[J]. 煤炭学报,2017,42(12):3249−3254.
LI Dong,LIU Shengyou,ZHANG Guangde,et al. Typical roof water disasters and its prevention & control technology in the north of Ordos Basin[J]. Journal of China Coal Society,2017,42(12):3249−3254.
[7] 侯恩科,杨斯亮,文强,等. 柠条塔井田南翼隐伏火烧区特征及富水性评价[J]. 煤矿安全,2022,53(11):191−199.
HOU Enke,YANG Siliang,WEN Qiang,et al. Characteristics and water abundance evaluation of concealed burning area in southern of Ningtiaota coal mine[J]. Safety in Coal Mines,2022,53(11):191−199.
[8] 胡俭,王海,杨帆,等. 陕北典型矿区烧变岩岩石学及地球化学特征[J]. 科学技术与工程,2024,24(23):9737−9745.
HU Jian,WANG Hai,YANG Fan,et al. Petrology and geochemical characteristics of burnt rocks in typical mining areas in northern Shaanxi[J]. Science Technology and Engineering,2024,24(23):9737−9745.
[9] 范立民,迟宝锁,王宏科,等. 鄂尔多斯盆地北部直罗组含水层研究进展与水害防治建议[J]. 煤炭学报,2022,47(10):3535−3546.
FAN Limin,CHI Baosuo,WANG Hongke,et al. Research progress of aquifer of Zhiluo Formation in northern Ordos Basin and suggestions on water hazard prevention[J]. Journal of China Coal Society,2022,47(10):3535−3546.
[10] 丁湘,申斌学,郑忠友,等. 深部侏罗系矿井充水强度评价与水害风险管控[M]. 北京:应急管理出版社,2022.
[11] 黄海鱼,丁湘,吴永辉,等. 鄂尔多斯盆地北部中侏罗统沉积相特征及其对中深部矿井涌水量的影响[J]. 西北大学学报(自然科学版),2022,52(3):508−518.
HUANG Haiyu,DING Xiang,WU Yonghui,et al. Sedimentary facies characteristics of the Middle Jurassic in northern Ordos Basin and their influence on water inflow in the middle and deep mines[J]. Journal of Northwest University (Natural Science Edition),2022,52(3):508−518.
[12] 武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.
WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.
[13] 王皓,董书宁,尚宏波,等. 国内外矿井水处理及资源化利用研究进展[J]. 煤田地质与勘探,2023,51(1):222−236.
WANG Hao,DONG Shuning,SHANG Hongbo,et al. Domestic and foreign progress of mine water treatment and resource utilization[J]. Coal Geology & Exploration,2023,51(1):222−236.
[14] ROLLAND W,ARNOLD I. Lignite mining in sensitive nature:Protection and compensation measures conducted by Vattenfall Europe mining,exemplarily shown for the mines of Cottbus–Nord and Janschwalde[J]. World of Mining–Surface & Underground,2005,57(6):383−389.
[15] 孙亚军,陈歌,徐智敏,等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报,2020,45(1):304−316.
SUN Yajun,CHEN Ge,XU Zhimin,et al. Research progress of water environment,treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society,2020,45(1):304−316.
[16] 仝泽文. 高盐矿井水资源化综合利用在高盐渍区荒漠造林中的试验研究[J]. 能源技术与管理,2023,48(5):136−139.
[17] 李鑫,孙亚军,陈歌,等. 高矿化度矿井水深部转移存储介质条件及影响机制[J]. 煤田地质与勘探,2021,49(5):17−28.
LI Xin,SUN Yajun,CHEN Ge,et al. Medium conditions and influence mechanism of high salinity mine water transfer and storage by deep well recharge[J]. Coal Geology & Exploration,2021,49(5):17−28.
[18] 梁积伟. 鄂尔多斯盆地侏罗系沉积体系和层序地层学研究[D]. 西安:西北大学,2007.
LIANG Jiwei. Research on sedimentary system and squence stratigraphy of the Jurassic in Ordos Basin[D]. Xi’an:Northwest University,2007.
[19] 张倩,李文厚,刘文汇,等. 鄂尔多斯盆地侏罗纪沉积体系及古地理演化[J]. 地质科学,2021,56(4):1106−1119.
ZHANG Qian,LI Wenhou,LIU Wenhui,et al. Jurassic sedimentary system and paleogeographic evolution of Ordos Basin[J]. Chinese Journal of Geology,2021,56(4):1106−1119.
[20] 侯恩科,童仁剑,冯洁,等. 烧变岩富水特征与采动水量损失预计[J]. 煤炭学报,2017,42(1):175−182.
HOU Enke,TONG Renjian,FENG Jie,et al. Water enrichment characteristics of burnt rock and prediction on water loss caused by coal mining[J]. Journal of China Coal Society,2017,42(1):175−182.
[21] 薛锐,赵俊峰,闫占冬,等. 鄂尔多斯盆地北部侏罗系直罗组沉积特征与演化[J]. 古地理学报,2017,19(6):999−1012.
XUE Rui,ZHAO Junfeng,YAN Zhandong,et al. Sedimentary characteristics and evolution of the Jurassic Zhiluo Formation in northern Ordos Basin[J]. Journal of Palaeogeography,2017,19(6):999−1012.
[22] 焦养泉,吴立群,荣辉,等. 鄂尔多斯盆地直罗组聚煤规律及其对古气候和铀成矿环境的指示意义[J]. 煤炭学报,2021,46(7):2331−2345.
JIAO Yangquan,WU Liqun,RONG Hui,et al. Coal accumulation regularity of Zhiluo Formation and its indication to paleoclimate and uranium metallogenic environment,Ordos Basin[J]. Journal of China Coal Society,2021,46(7):2331−2345.
[23] ZHANG Kang,LI Ziying,YI Chao,et al. Compositions of Zhiluo Formation sandstone of northeastern Ordos Basin and its use as a provenance indicator[J]. Acta Geologica Sinica (English Edition),2014,88(Sup.2):1426−1427.
[24] 李文厚,张倩,李兆雨,等. 鄂尔多斯盆地及周缘岩相古地理与沉积演化[J]. 西北大学学报(自然科学版),2024,54(6):929−949.
LI Wenhou,ZHANG Qian,LI Zhaoyu,et al. Lithofacies palaeogeography and sedimentary evolution of Ordos Basin and its periphery[J]. Journal of Northwest University (Natural Science Edition),2024,54(6):929−949.
[25] 马静. 鄂尔多斯盆地白垩系古沙漠研究[D]. 北京:中国地质大学(北京),2020.
MA Jing. Sedimentary basin analysis of the Cretaceous ancient desert in the Ordos Basin[D]. Beijing:China University of Geosciences (Beijing),2020.
[26] 鞠金峰,马祥,赵富强,等. 东胜煤田导水裂隙发育及其分区特征研究[J]. 煤炭科学技术,2022,50(2):202−212.
JU Jinfeng,MA Xiang,ZHAO Fuqiang,et al. Development and zoning characteristics of water–conducted fractures in Dongsheng coalfield[J]. Coal Science and Technology,2022,50(2):202−212.
[27] 赵富强. 东胜典型赋煤条件采动导水裂隙发育规律研究[D]. 徐州:中国矿业大学,2021.
ZHAO Fuqiang. Development law of water flowing fracture during mining under typical coal bearing conditions in Dongsheng[D]. Xuzhou:China University of Mining and Technology,2021.
[28] 付德渊,樊江伟,乌阳嘎,等. 基于AHP的东胜煤田煤层顶板充水强度分区评价[J]. 陕西煤炭,2024,43(9):58−63.
FU Deyuan,FAN Jiangwei,WU Yangga,et al. Evaluation of roof water filling intensity zoning for coal seam of Dongsheng coalfield based on AHP[J]. Shaanxi Coal,2024,43(9):58−63.
[29] 范立民,孙魁,马万超,等. 鄂尔多斯盆地北部直罗组古河道砂体分布区矿井涌水模式[J]. 煤炭学报,2024,49(2):917−928.
FAN Limin,SUN Kui,MA Wanchao,et al. Mine water inflow pattern in the distribution area of paleochannel sand bodies of the Zhiluo Formation in the northern part of the Ordos Basin[J]. Journal of China Coal Society,2024,49(2):917−928.
[30] 黄金廷,宁博涵,孙魁,等. 神南矿区直罗组含水层对矿井涌水贡献量预测分析[J]. 西北地质,2023,56(6):176−185.
HUANG Jinting,NING Bohan,SUN Kui,et al. Contribution of groundwater in Zhiluo aquifer to mine water in Shennan mining area:Numerical simulation[J]. Northwestern Geology,2023,56(6):176−185.
[31] 范立民,马雄德,蒋泽泉,等. 保水采煤研究30年回顾与展望[J]. 煤炭科学技术,2019,47(7):1−30.
FAN Limin,MA Xiongde,JIANG Zequan,et al. Review and thirty years prospect of research on water–preserved coal mining[J]. Coal Science and Technology,2019,47(7):1−30.
[32] 岳喜军. 石拉乌素矿白垩系离层水害类型及防治技术研究[D]. 徐州:中国矿业大学,2021.
YUE Xijun. Types and prevention of Cretaceous bed separation water hazard in Shilawusu mine[D]. Xuzhou:China University of Mining and Technology,2021.
[33] 赵东良. 石拉乌素矿离层水涌突机理研究[D]. 徐州:中国矿业大学,2020.
ZHAO Dongliang. Study on the mechanism of water inrush from bed–separation in Shilawusu coalmine[D]. Xuzhou:China University of Mining and Technology,2020.
[34] 王庆雄,马艳. 哈拉沟煤矿矿井水资源化利用技术[J]. 中国矿业,2020,29(增刊2):121−125.
WANG Qingxiong,MA Yan. Utilization technology of water resources in Halagou coal mine[J]. China Mining Magazine,2020,29(Sup.2):121−125.
[35] 柴建禄. 采煤对浅层地下水环境的影响及矿井水生态利用分析[J]. 煤田地质与勘探,2022,50(7):138−144.
CHAI Jianlu. Influence of coal mining on shallow groundwater environment response to coal mining and mine water ecological utilization analysis[J]. Coal Geology & Exploration,2022,50(7):138−144.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons