Coal Geology & Exploration
Abstract
Background Coal mining subsidence areas, formed by the exploitation of coal resources, have emerged as severe challenges to the construction of ecological civilization and the sustainable development of the social economy in China. Their management, restoration, development, and utilization play a significant role in ecological security, food security, and energy transformation. Methods This study aims to address the unresolved and emerging issues in the management of coal mining subsidence areas. Based on the core concepts of management, restoration, development, and utilization, this study developed a dual-level zoning basis system combining theories and reality. Accordingly, coal mining subsidence areas in China were classified into six types of functional areas: cultivated land restoration areas in plains, ecological conservation areas in alpine forest lands and grasslands, wetland construction areas in areas with high phreatic surfaces, renewable energy development areas in deserts, urban construction and utilization areas, and underground space development and utilization areas. For these areas, this study systematically summarized the advances in key technologies, practical achievements, and existing challenges. Advances For cultivated land restoration areas in plains, the filling material optimization, scientific soil reconstruction technology, and proactive restoration strategy have been integrated to restore the productivity of destroyed cultivated land. For ecological conservation areas in alpine forest lands and grasslands, the selection and configuration of hardy plants, the construction of matching soil matrix, reasonable artificial vegetation rehabilitation, and differential water resource management have been combined to address the challenge in ecological reconstruction in extreme environments. For wetland construction areas in areas with high phreatic surfaces, novel wetland agriculture, artificial regulation of water resources, and photovoltaic development have been jointly adopted to reconstruct hydrological systems and transform ecological value. For renewable energy development areas in deserts, renewable energy development and construction, ecological effect assessment, and renewable energy consumption have been explored to support the construction of energy bases in deserts, Gobi, and wastelands. For urban construction and utilization areas, a whole-process technology chain consisting of fine-scale exploration, targeted management, deformation-resistant structures, grouting quality detection, multi-approach collaborative monitoring, monitoring and early warning of residual deformations, and collapse risk control has been utilized to ensure the safe construction of aboveground and ground engineering. For underground space development and utilization areas, multi-dimensional development and utilization paths for abandoned mines have been explored based on the function transformation potential and development suitability of abandoned mines. Prospects From the perspectives of intelligence level, digital transformation, and the economic development of carbon sinks, this study envisions the management, restoration, development, and utilization trends of coal mining subsidence areas. Moreover, this study proposes subsequent research directions, including the resource utilization of Yellow River sediments and corresponding intelligent mining and restoration coordination, the precise configuration of communities facilitating ecological restoration and frozen soil protection in alpine mining areas, and the economic value assessment of wetland carbon sinks in subsidence areas with high phreatic surfaces. The results of this study will serve as a reference for the sustainable development of mining cities in China.
Keywords
coal mining subsidence area, management and restoration, land reclamation, ecological restoration, wetland development, renewable energy development, urban construction, underground space development
DOI
10.12363/issn.1001-1986.24.12.0831
Recommended Citation
MENG Zhuanghan, WANG Yutao, TIAN Yanzhe,
et al.
(2025)
"Advances in key technologies for the management, restoration, development, and utilization of coal mining subsidence areas,"
Coal Geology & Exploration: Vol. 53:
Iss.
7, Article 21.
DOI: 10.12363/issn.1001-1986.24.12.0831
Available at:
https://cge.researchcommons.org/journal/vol53/iss7/21
Reference
[1] 郭会霞. 全国人大代表、中国工程院院士袁亮:建议构建采煤沉陷区“水上农场”并纳入耕地占补平衡[EB/OL]. (2025-03-05) [2025-05-30]. https://news.aust.edu.cn/info/1014/43838.htm.
[2] 李佳洺,余建辉,张文忠. 中国采煤沉陷区空间格局与治理模式[J]. 自然资源学报,2019,34(4):867−880.
LI Jiaming,YU Jianhui,ZHANG Wenzhong. Spatial distribution and governance of coal–mine subsidence in China[J]. Journal of Natural Resources,2019,34(4):867−880.
[3] 袁亮,徐良骥. 高潜水位采煤沉陷区资源化、能源化、功能化利用构想与实践[J]. 煤炭学报,2024,49(1):65−74.
YUAN Liang,XU Liangji. Conception and practice of resource utilization,energization and functionalization of coal mining subsidence areas with high groundwater level[J]. Journal of China Coal Society,2024,49(1):65−74.
[4] 中国煤炭工业协会. 2024煤炭行业发展年度报告[R]. 北京:中国煤炭工业协会,2025.
[5] 唐孝辉. 山西采煤沉陷区现状、危害及治理[J]. 生态经济,2016,32(2):6−9.
[6] 李树志. 我国采煤沉陷区治理实践与对策分析[J]. 煤炭科学技术,2019,47(1):36−43.
LI Shuzhi. Control practices and countermeasure analysis on coal mining subsidence area in China[J]. Coal Science and Technology,2019,47(1):36−43.
[7] 中华人民共和国自然资源部. 中国自然资源统计年鉴2024[M]. 北京:地质出版社,2024.
[8] 李秀,刘尧,闫莹. 变荒芜为沃土的“大地医生”——记2023年度何梁何利基金科学与技术进步奖获得者、中国矿业大学教授胡振琪[N]. 中国煤炭报,2024-01-20(4).
[9] 淮南市自然资源和规划局. 淮南市四举措系统推进采煤沉陷区综合治理[EB/OL]. (2024-09-24) [2025-05-30]. https://zrzyj.huainan.gov.cn/xwzx/ywlb/551774382.html.
[10] 荣颖,胡振琪,杜玉玺,等. 露天矿区土壤基质改良材料研究进展[J]. 金属矿山,2018(2):164−171.
RONG Ying,HU Zhenqi,DU Yuxi,et al. Research advance of soil amelioration materials in opencast mines[J]. Metal Mine,2018(2):164−171.
[11] 胡振琪,王培俊,邵芳. 引黄河泥沙充填复垦采煤沉陷地技术的试验研究[J]. 农业工程学报,2015,31(3):288−295.
HU Zhenqi,WANG Peijun,SHAO Fang. Technique for filling reclamation of mining subsidence land with Yellow River sediment[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(3):288−295.
[12] 胡振琪. 矿山复垦土壤重构的理论与方法[J]. 煤炭学报,2022,47(7):2499−2515.
HU Zhenqi. Theory and method of soil reconstruction of reclaimed mined land[J]. Journal of China Coal Society,2022,47(7):2499−2515.
[13] 刘慧,柴枭雄,李长明,等. 黄河泥沙物化特性与改性利用研究进展[J]. 人民黄河,2023,45(5):41−45.
LIU Hui,CHAI Xiaoxiong,LI Changming,et al. Research progress of physical–chemical characteristics and modification utilization of sediment in Yellow River[J]. Yellow River,2023,45(5):41−45.
[14] 邵芳,胡振琪,樊廷立,等. 玉米形态指标对黄河泥沙充填复垦覆土厚度的响应[J]. 煤炭技术,2016,35(12):10−11.
SHAO Fang,HU Zhenqi,FAN Tingli,et al. Response of maize morphological indicators to different thickness of covered soil on Yellow River sediment[J]. Coal Technology,2016,35(12):10−11.
[15] 王培俊,华宝龙,孙煌,等. 黄河泥沙充填复垦农田生产力障碍因素调查分析[J]. 中国农业大学学报,2020,25(3):139−147.
WANG Peijun,HUA Baolong,SUN Huang,et al. Investigation and analysis of obstacle factors on productivity of the reclaimed farmland filled with Yellow River sediment[J]. Journal of China Agricultural University,2020,25(3):139−147.
[16] 王晓彤,胡振琪,梁宇生. 基于Hydrus–1D的黄河泥沙充填复垦土壤夹层结构优化[J]. 农业工程学报,2022,38(2):76−86.
WANG Xiaotong,HU Zhenqi,LIANG Yusheng. Structural optimization of reclaimed subsidence land interlayers filling with the Yellow River sediments using a Hydrus–1D model[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(2):76−86.
[17] 邵芳,胡振琪,李星宇,等. 黄河泥沙充填复垦覆土材料垂直一维入渗特性研究[J]. 煤炭科学技术,2017,45(1):226−230.
SHAO Fang,HU Zhenqi,LI Xingyu,et al. One–dimensional vertical infiltration of alternative soil covered on Yellow River sediment layer in filling reclamation[J]. Coal Science and Technology,2017,45(1):226−230.
[18] 胡振琪,李勇,陈洋. 黄河泥沙在生态修复中的作用机理与关键技术[J]. 中国矿业大学学报,2022,51(1):1−15.
HU Zhenqi,LI Yong,CHEN Yang. The mechanism and key technology of the Yellow River sediment in ecological rehabilitation[J]. Journal of China University of Mining & Technology,2022,51(1):1−15.
[19] 多玲花. 采煤沉陷地黄河泥沙交替式多次多层充填复垦关键技术[D]. 北京:中国矿业大学(北京),2019.
DUO Linghua. Key technologies of subsidence land reclamation filled with Yellow River sediments by alternating multi–times and multilayers[D]. Beijing:China University of Mining & Technology (Beijing),2019.
[20] 王晓彤,胡振琪,梁宇生,等. 基于水分特性的采煤沉陷地充填复垦黄河泥沙容重优选[J]. 农业工程学报,2018,34(16):258−264.
WANG Xiaotong,HU Zhenqi,LIANG Yusheng,et al. Optimal bulk density infilling reclamation of mining subsidence land with Yellow River sediment based on water characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(16):258−264.
[21] 胡振琪,赵艳玲. 黄河流域矿区生态环境与黄河泥沙协同治理原理与技术方法[J]. 煤炭学报,2022,47(1):438−448.
HU Zhenqi,ZHAO Yanling. Principle and technology of coordinated control of eco–environment of mining areas and river sediments in Yellow River watershed[J]. Journal of China Coal Society,2022,47(1):438−448.
[22] LI Fang,LI Xinju,HOU Le,et al. A long–term study on the soil reconstruction process of reclaimed land by coal gangue filling[J]. CATENA,2020,195:104874.
[23] 王玉涛. 煤矸石固废无害化处置与资源化综合利用现状与展望[J]. 煤田地质与勘探,2022,50(10):54−66.
WANG Yutao. Status and prospect of harmless disposal and resource comprehensive utilization of solid waste of coal gangue[J]. Coal Geology & Exploration,2022,50(10):54−66.
[24] 史全林,龙力华,杨前,等. 煤矸石在绿色矿山建设中的规模化利用技术研究进展[J]. 煤田地质与勘探,2025,53(3):113−125.
SHI Quanlin,LONG Lihua,YANG Qian,et al. Advances in research on technologies for large–scale coal gangue utilization for green mine construction[J]. Coal Geology & Exploration,2025,53(3):113−125.
[25] 赵鹏,史兴萍,尚卿,等. 矿区复垦地土壤改良研究进展[J]. 农业资源与环境学报,2023,40(1):1−14.
ZHAO Peng,SHI Xingping,SHANG Qing,et al. The research progress on soil amelioration in mine reclamation land[J]. Journal of Agricultural Resources and Environment,2023,40(1):1−14.
[26] 孙茁恒,王东丽,赵晓亮,等. 保水剂协同外源物添加对矿区复垦地植物生长与土壤养分的影响[J]. 安徽农业科学,2024,52(3):65−70.
SUN Zhuoheng,WANG Dongli,ZHAO Xiaoliang,et al. Effects of water–retaining agent combined with exogenous substances on plant growth and soil nutrients in reclaimed land of mining area[J]. Journal of Anhui Agricultural Sciences,2024,52(3):65−70.
[27] 毕银丽,张可,肖礼,等. 矿区复垦地接菌驱动植物–土壤系统中光合碳分配与稳定机制[J]. 煤炭学报,2025,50(1):572−583.
BI Yinli,ZHANG Ke,XIAO Li,et al. Mechanisms of carbon distribution and stability in the photosynthetic processes of plant–soil systems influenced by arbuscular mycorrhizal fungi during reclamation of mining areas[J]. Journal of China Coal Society,2025,50(1):572−583.
[28] 王滋贯,赵丹,王瑞雪. 我国矿区棕地综合治理及再利用[J]. 煤田地质与勘探,2017,45(5):127−134.
WANG Ziguan,ZHAO Dan,WANG Ruixue. Sustainable management and reuse of brownfield in China’s mining areas[J]. Coal Geology & Exploration,2017,45(5):127−134.
[29] 胡振琪,张子璇,孙煌. 试论矿山生态修复的地质成土[J]. 煤田地质与勘探,2022,50(12):21−29.
HU Zhenqi,ZHANG Zixuan,SUN Huang. Geological soil formation for ecological restoration of mining areas and its case study[J]. Coal Geology & Exploration,2022,50(12):21−29.
[30] 胡振琪,李根生,袁冬竹. 东部煤粮复合区采煤沉陷地边采边复时机[J]. 煤炭学报,2023,48(1):373−387.
HU Zhenqi,LI Gensheng,YUAN Dongzhu. Timing of concurrent mining and reclamation in coal–grain overlapping areas with mining–induced subsidence,Eastern China[J]. Journal of China Coal Society,2023,48(1):373−387.
[31] 李根生. 东部煤粮复合区采复耦合机理与协调技术研究[D]. 徐州:中国矿业大学,2023.
LI Gensheng. Coupling mechanism and coordination technology of underground coal mining and mine reclamation in coal–grain overlapping areas of Eastern China[D]. Xuzhou:China University of Mining and Technology,2023.
[32] 郭广礼,李怀展,查剑锋,等. 平原煤粮主产复合区煤矿开采和耕地保护协同发展研究现状及对策[J]. 煤炭科学技术,2023,51(1):416−426.
GUO Guangli,LI Huaizhan,ZHA Jianfeng,et al. Research status and countermeasures of coordinated development of coal mining and cultivated land protection in the plain coal–cropland overlapped areas[J]. Coal Science and Technology,2023,51(1):416−426.
[33] 中国煤炭学会. 2016–2017煤矿区土地复垦与生态修复学科发展报告[M]. 北京:中国科学技术出版社,2018.
[34] 王君武,张茂林,侯克锁,等. 高寒高海拔地区路域生态修复技术体系研究[J]. 交通节能与环保,2018,14(1):34−36.
WANG Junwu,ZHANG Maolin,HOU Kesuo,et al. Study on ecological restoration technology system for road areas in alpine area at high altitude[J]. Energy Conservation & Environmental Protection in Transportation,2018,14(1):34−36.
[35] 李凤明,白国良,韩科明. 木里矿区生态环境受损特征及治理方法研究[J]. 煤炭工程,2021,53(10):116−121.
LI Fengming,BAI Guoliang,HAN Keming. Characteristics and treatment methods of ecological environment damage in Muli mining area[J]. Coal Engineering,2021,53(10):116−121.
[36] 林晴纯. 基于eDNA的青藏高原不同流域植被多样性特征与影响因素[D]. 上海:华东师范大学,2024.
LIN Qingchun. Characteristics and influencing factors of vegetation community diversity based on eDNA in different watersheds on the Tibetan Plateau[D]. Shanghai:East China Normal University,2024.
[37] 海北州林业和草原局. 江仓一号井生态修复(种草复绿)补种补植补肥技术方案[EB/OL]. (2022-10-24) [2025-05-30]. http://lcj. haibei. gov. cn/ztzl/lczygh/8377681. html.
[38] 高大珍. 玛曲高寒沙化草地牧草适应性及植被恢复模式研究[D]. 兰州:兰州大学,2023.
GAO Dazhen. Study on herbage adaptability and vegetation restoration model of alpine sandy grassland in Maqu[D]. Lanzhou:Lanzhou University,2023.
[39] 张江华,王葵颖,徐友宁,等. 矿采对高寒草地的影响及植被恢复技术[J]. 地质通报,2018,37(12):2260−2263.
ZHANG Jianghua,WANG Kuiying,XU Youning,et al. A study of the effect of mine exploitation on alpine grassland and its vegetation restoration technology[J]. Geological Bulletin of China,2018,37(12):2260−2263.
[40] 魏亚娟,刘美英,解云虎,等. 希拉穆仁荒漠草原围封区植物群落土壤有机碳研究[J]. 水土保持研究,2024,31(1):35−43.
WEI Yajuan,LIU Meiying,XIE Yunhu,et al. Study on soil organic carbon of plant communities in enclosed area of Xilamuren Desert grassland[J]. Research of Soil and Water Conservation,2024,31(1):35−43.
[41] 杨瑞先,刘萍,石犇,等. 钼还原促生菌的筛选及对紫花苜蓿钼吸收的调控作用[J]. 微生物学报,2025,65(5):1995−2013.
YANG Ruixian,LIU Ping,SHI Ben,et al. Screening of molybdate–reducing bacteria capable of promoting the growth and regulating the molybdate uptake of Medicago sativa[J]. Acta Microbiologica Sinica,2025,65(5):1995−2013.
[42] 苏志刚,翟亚军,陈盈熹,等. 禾本科牧草抗重金属研究进展[J]. 中国饲料,2025(9):93−100.
SU Zhigang,ZHAI Yajun,CHEN Yingxi,et al. Research progress on heavy metal resistance of Gramineous forage[J]. China Feed,2025(9):93−100.
[43] 贺亭亭,邢锦城,刘冲,等. 田菁相关研究进展与应用现状[J]. 江苏农业科学,2021,49(22):43–49
[44] 王冬. 不同土质类型的草本植物护坡效果研究与评价[D]. 哈尔滨:东北林业大学,2012.
WANG Dong. Effect research and evaluation of slope protection for herbs in different soil types[D]. Harbin:Northeast Forestry University,2012.
[45] 郭勇. 高海拔严寒地区石马公路边坡植被防护研究[D]. 成都:成都理工大学,2014.
GUO Yong. Research for vegetation restoration to Shima highway slope in high elevation & cold region[D]. Chengdu:Chengdu University of Technology,2014.
[46] 李红梅,李鹏霞,张红霞,等. 高寒区优质牧草筛选及牦犊牛培育的影响[J]. 中国牛业科学,2024,50(4):42−45.
LI Hongmei,LI Pengxia,ZHANG Hongxia,et al. Screening of high quality forage grass and effect of yak calves breeding in high cold area[J]. China Cattle Science,2024,50(4):42−45.
[47] 王佟,蔡杏兰,李飞,等. 高原高寒矿区生态地质层修复中的土壤层构建与成分变化差异[J]. 煤炭学报,2022,47(6):2407−2419.
WANG Tong,CAI Xinglan,LI Fei,et al. Soil layer construction and composition changes in restoration of ecological and geological layer in alpine mining area on plateau[J]. Journal of China Coal Society,2022,47(6):2407−2419.
[48] 北京林业大学. 高寒矿区冻土层重构结构与方法:202410748132. 6[P]. 2024-09-17.
[49] 金立群,李希来,宋梓涵,等. 高寒矿区植被恢复对渣山表层基质的响应[J]. 草业科学,2018,35(12):2784−2793.
JIN Liqun,LI Xilai,SONG Zihan,et al. Effect of vegetation restoration on the surface substrates of piling mining residuals in the Muli coal field of Qinghai[J]. Pratacultural Science,2018,35(12):2784−2793.
[50] 张露,严文超,蒋福祯,等. 不同恢复措施对高寒矿区废弃地土壤水源涵养能力的短期影响[J/OL]. 应用与环境生物学报,2025:1–14 (2025-02-18) [2025-04-20]. https://link.cnki.net/doi/10.19675/j.cnki.1006–687x.2024.08013.
ZHANG Lu,YAN Wenchao,JIANG Fuzhen,et al. Short–term effects of different restoration approaches on soil water holding capacity in the alpine mining area abandoned land[J/OL]. Chinese Journal of Applied and Environmental Biology,2025:1–14 (2025-02-18) [2025-04-20]. https://link.cnki.net/doi/10.19675/j.cnki.1006–687x.2024.08013.
[51] 杨竟艺. 祁连山自然保护区不同海拔煤矿生态修复现状及修复效果评估[D]. 兰州:甘肃农业大学,2024.
YANG Jingyi. Ecological restoration status and effect assessment of coal mines at different altitudes in the Qilian Mountain Nature Reserve[D]. Lanzhou:Gansu Agricultural University,2024.
[52] 金立群. 木里矿区“以肥代土”土壤重构与植被恢复关键影响因子研究[D]. 西宁:青海大学,2024.
JIN Liqun. Research on the key factors affecting soil reconstruction and vegetation restoration through “Fertilization in lieu of Soil” in the Muli mining area[D]. Xining:Qinghai University,2024.
[53] 刘伟,尹勤瑞,刘祥宏. 煤矿区生态自然修复及其人工促进模式探讨[J]. 煤田地质与勘探,2023,51(4):110−124.
LIU Wei,YIN Qinrui,LIU Xianghong. Ecological natural restoration and its artificial promotion mode in coal mining area[J]. Coal Geology & Exploration,2023,51(4):110−124.
[54] 赫苗花. 木里矿区适宜生态草种及其混播组合筛选[D]. 西宁:青海大学,2024.
HE Miaohua. Screening suitable ecological grasses and the mixed sowing in Muli mining area[D]. Xining:Qinghai University,2024.
[55] 刘万杰,蒋福祯,马利利,等. 有机肥施用量和播种方式对高寒矿区植物群落生长和土壤养分的影响[J]. 草原与草坪,2023,43(2):116−125.
LIU Wanjie,JIANG Fuzhen,MA Lili,et al. Effects of application amount of organic fertilizer and sowing methods on plant community growth and soil nutrients in alpine mining areas[J]. Grassland and Turf,2023,43(2):116−125.
[56] 申晓哲. 采煤沉陷区土地复垦林草植被恢复技术研究:以常村煤矿为例[J]. 山西林业,2020(增刊1):36−37.
[57] 王锐,李希来,张静. 四种覆土处理对高寒煤矿区排土场渣山植被恢复的影响[J]. 草业学报,2020,29(7):40−51.
WANG Rui,LI Xilai,ZHANG Jing. Effects of four different soil–covering measures on vegetation restoration of coal mine spoils in an alpine area[J]. Acta Prataculturae Sinica,2020,29(7):40−51.
[58] 王佟,杜斌,李聪聪,等. 高原高寒煤矿区生态环境修复治理模式与关键技术[J]. 煤炭学报,2021,46(1):230−244.
WANG Tong,DU Bin,LI Congcong,et al. Ecological environment rehabilitation management model and key technologies in plateau alpine coal mine[J]. Journal of China Coal Society,2021,46(1):230−244.
[59] 王辰. 修复高寒草地需因地制宜不断探索[N]. 中国绿色时报,2022-07-27(2).
[60] 金立群,李希来,孙华方,等. 不同恢复年限对高寒露天煤矿区渣山植被和土壤特性的影响[J]. 生态学杂志,2019,38(1):121−128.
JIN Liqun,LI Xilai,SUN Huafang,et al. Effects of different years of recovery on vegetation and soil characteristics of open–pit coal mine dumps in alpine region[J]. Chinese Journal of Ecology,2019,38(1):121−128.
[61] 杨鑫光,李希来,金立群,等. 短期恢复下高寒矿区煤矸石山土壤变化特征研究[J]. 草业学报,2018,27(8):30−38.
YANG Xinguang,LI Xilai,JIN Liqun,et al. Changes in soil properties of coal mine spoils in an alpine coal mining area after short–term restoration[J]. Acta Prataculturae Sinica,2018,27(8):30−38.
[62] 王辉. 安徽理工大学校长袁亮:“水上农场”可助解决采煤沉陷区耕地复垦难题[EB/OL]. (2025-03-12) [2025-05-31]. https://china.chinadaily.com.cn/a/202503/12/WS67d0dfe4a310510f19eeb03d.html.
[63] 李兵. 多阶段采煤沉陷区生态环境保护模式研究:以淮南潘谢矿区为例[J]. 内蒙古煤炭经济,2024(7):55−57.
[64] 魏云琦,张媛,郭湧,等. 高潜水位矿区采煤沉陷区景观规划研究:以山东彭庄煤矿田园综合体为例[J]. 小城镇建设,2022,40(9):79−88.
WEI Yunqi,ZHANG Yuan,GUO Yong,et al. Research on landscape planning of mining subsidence area in high groundwater level mining area:A case of rural complex in Pengzhuang coal mine,Shandong Province[J]. Development of Small Cities & Towns,2022,40(9):79−88.
[65] 孙凯华,靳婷. 东部高潜水位采煤沉陷区生态修复与利用技术体系[J]. 矿山测量,2022,50(1):88−92.
SUN Kaihua,JIN Ting. Technology system of ecological restoration and land utilization for coal mining subsidence area with high phreatic level in Eastern China[J]. Mine Surveying,2022,50(1):88−92.
[66] 刘辉,朱晓峻,程桦,等. 高潜水位采煤沉陷区人居环境与生态重构关键技术:以安徽淮北绿金湖为例[J]. 煤炭学报,2021,46(12):4021−4032.
LIU Hui,ZHU Xiaojun,CHENG Hua,et al. Key technology of human environment and ecological reconstruction in high submersible level coal mining subsidence area:A case study from Lyujin Lake,Huaibei[J]. Journal of China Coal Society,2021,46(12):4021−4032.
[67] 自然资源部国土空间生态修复司. 中国生态修复典型案例集(含18个案例)[R]. 北京:自然资源部,2021.
[68] 陈晨,李兵,徐燕飞. 平原高潜水位采煤沉陷区规划与综合利用策略:以淮南矿区为例[J]. 安徽农学通报,2019,25(16):125−126.
CHEN Chen,LI Bing,XU Yanfei. Discussion on planning and comprehensive utilization strategy of coal mining subsidence area in high phreatic level in plain:Taking Huainan mining area as an example[J]. Anhui Agricultural Science Bulletin,2019,25(16):125−126.
[69] 陈永春,袁亮,徐翀. 淮南矿区利用采煤塌陷区建设平原水库研究[J]. 煤炭学报,2016,41(11):2830−2835.
CHEN Yongchun,YUAN Liang,XU Chong. Investigation on using mining subsidence area to build a reservoir in Huainan coal mining area[J]. Journal of China Coal Society,2016,41(11):2830−2835.
[70] 振兴司. “喜迎二十大 转型再出发”资源型地区转型发展工作纪实之七:山东省济宁市采煤沉陷区[EB/OL]. (2022-10-24) [2025-05-31]. https://www.ndrc.gov.cn/fggz/dqzx/zyxdqzxfz/202210/t20221024_1338984.html.
[71] 李慧. 采煤沉陷区分布式水循环模型研究[D]. 北京:中国水利水电科学研究院,2016.
LI Hui. Research on the distributed water cycle model of coal mining subsidence area[D]. Beijing:China Institute of Water Resources and Hydropower Research,2016.
[72] 陈昌才. 引江济淮工程沿淮湖洼调蓄方案与布局[J]. 治淮,2015(9):23−25.
[73] 振兴司. “喜迎二十大 转型再出发”资源型地区转型发展工作纪实之五:安徽省淮南市采煤沉陷区[EB/OL]. (2022-10-24) [2025-05-31]. https://www.ndrc.gov.cn/fggz/dqzx/zyxdqzxfz/202210/t20221024_1338982.html.
[74] 尹晓龙. 晋北采煤沉陷区大型风电光伏基地规划研究[J]. 电力设备管理,2022(20):179−182.
YIN Xiaolong. Planning study on large wind power photovoltaic base in the coal mining subsidence area of northern Jin[J]. Electric Power Equipment Management,2022(20):179−182.
[75] 王龙飞,王帅,李庆,等. 西部地区矿井多能互补热电协同供能系统配置优化[J]. 煤炭学报,2025,50(5):2739−2751.
WANG Longfei,WANG Shuai,LI Qing,et al. Optimization configuration of coal mine multi–energy complementary heat and power coordinated supply system in Western China[J]. Journal of China Coal Society,2025,50(5):2739−2751.
[76] 周围围. 青年在“沙戈荒”谋绿色发展[N]. 中国青年报,2024-11-28(7).
[77] 李晋原. 荒漠蓝海里的“追光者”[EB/OL]. (2024-04-15) [2025-05-31]. http://www.ccoalnews.com/news/202406/13/c185277.html.
[78] 央广网. 中国经济一月纪事丨沙漠里开出“向阳花”[EB/OL]. (2025-01-16) [2025-05-31]. https://baijiahao.baidu.com/sid=1821396 031974788308&wfr=spider&for=pc.
[79] 岳生娟. 青海荒漠区大规模光伏开发生态环境效应研究[D]. 西安:西安理工大学,2022.
YUE Shengjuan. Research on eco–environmental effects of large–scale photovoltaic development in Qinghai Desert Area[D]. Xi’an:Xi’an University of Technology,2022.
[80] 尚小伟,王云正,霍毅,等. 荒漠集中式光伏电站的气候生态影响机制与植被恢复模式[J]. 中国水土保持科学,2025,23(1):10−20.
SHANG Xiaowei,WANG Yunzheng,HUO Yi,et al. Climate ecological impact mechanism and vegetation restoration modes of desert centralized photovoltaic power stations[J]. Science of Soil and Water Conservation,2025,23(1):10−20.
[81] 秦一凡. 大型荒漠光伏开发对局地微气候–土壤–植被的影响研究[D]. 西安:西安理工大学,2021.
QIN Yifan. Research on the impact of large–scale desert photovoltaic development on local microclimate,soil and vegetation[D]. Xi’an:Xi’an University of Technology,2021.
[82] 华夏能源网. 消纳危机何解?国家能源局将重点监管“沙戈荒”![EB/OL]. (2025-04-21) [2025-05-31]. https://www.ndrc.gov.cn/ fggz/dqzx/zyxdqzxfz/202210/t20221024_1338984.html.
[83] 中国经济报. 消纳难题再现 新能源发展空间受限?[EB/OL]. (2024-01-06) [2025-05-31]. https://baijiahao.baidu.com/sid=1787281555630023312&wfr=spider&for=pc.
[84] 中国储能网新闻中心. 促进新能源与产业协同发展的思考与建议[EB/OL]. (2025-05-22) [2025-05-31]. https://www.escn.com.cn/ news/show–2110057.html.
[85] 李远. 头顶有风光,脚下有煤炭,手中有电网,既要“羊煤土气”,也要“追风逐日”——以新发展理念再造一个“工业内蒙古”[N]. 中国能源报,2023-05-29(1).
[86] 内蒙古新闻网. 秋日奋进图鉴丨一起解锁蒙西鄂尔多斯采煤沉陷区4GW新能源大基地项目“新颜”![EB/OL]. (2024-10-29) [2025-05-31]. https://www.nmgnews.com.cn/zx/system/2024/10/29/03 0057673.shtml.
[87] 李建文,赵文,吴振坤,等. 煤矿采空区覆岩“三带”智能识别方法[J]. 煤田地质与勘探,2024,52(4):164−171.
LI Jianwen,ZHAO Wen,WU Zhenkun,et al. Intelligent identification method for overburden three zones of a goaf[J]. Coal Geology & Exploration,2024,52(4):164−171.
[88] 郭文兵,徐曙光,杨伟强,等. 采空区采动覆岩空隙率分布规律及分区治理方法[J/OL]. 煤炭学报,2025:1–15 (2025-05-20) [2025-06-18]. https://link.cnki.net/doi/10.13225/j.cnki.jccs.2024.1639
GUO Wenbing,XU Shuguang,YANG Weiqiang,et al. Distribution pattern of overburden void ratio induced by mining in goaf areas and corresponding zoning–based control measures[J/OL]. Journal of China Coal Society,2025:1–15 (2025-05-20) [2025-06-18]. https://link.cnki.net/doi/10.13225/j.cnki.jccs.2024.1639.
[89] 董敏涛. “天窗”隐蔽致灾因素地质–工程一体化普查技术[J]. 煤田地质与勘探,2025,53(2):22−32.
DONG Mintao. Geological–engineering integrated reconnaissance survey technology for skylights as a hidden disaster–causing factor[J]. Coal Geology & Exploration,2025,53(2):22−32.
[90] 王海军,郑三龙,王相业,等. 地质构造隐蔽致灾因素透明化勘查技术:以新疆屯宝煤矿为例[J]. 煤炭科学技术,2024,52(9):173−188.
WANG Haijun,ZHENG Sanlong,WANG Xiangye,et al. Transparent exploration technology for hidden disaster–causing factors of geological structure:Taking Tunbao coal mine in Xinjiang as an example[J]. Coal Science and Technology,2024,52(9):173−188.
[91] 赵斗. 高速铁路大范围穿越采空区关键技术研究[J]. 铁道工程学报,2024,41(6):34−39.
ZHAO Dou. Research on the key technologies for high–speed railway’s large range crossing of goaf[J]. Journal of Railway Engineering Society,2024,41(6):34−39.
[92] 程建远,张宪旭,蒋必辞,等. 从1D到4D:煤田地震勘探的技术进步及启示[J]. 煤田地质与勘探,2023,51(1):247−258.
CHENG Jianyuan,ZHANG Xianxu,JIANG Bici,et al. From 1D to 4D:Advances and thoughts on coal seismic technology[J]. Coal Geology & Exploration,2023,51(1):247−258.
[93] 刘建林,刘飞,李泉新,等. 煤矿井下特种钻进工艺技术研究进展与思考[J]. 煤炭科学技术,2025,53(2):239−254.
LIU Jianlin,LIU Fei,LI Quanxin,et al. Research progress and thinking on specialized drilling technology in underground coal mine[J]. Coal Science and Technology,2025,53(2):239−254.
[94] 李杰,郭文兵. 离层注浆减沉技术下公路移动变形规律研究[J]. 地质与勘探,2025,61(3):592−606.
LI Jie,GUO Wenbing. Deformation law of highway movement under separation grouting and sedimentation reduction technology[J]. Geology and Exploration,2025,61(3):592−606.
[95] 邹军,郭艳,桂和荣,等. 煤层底板灰岩区域注浆浆液屈服强度性能实验[J]. 煤田地质与勘探,2025,53(4):182−190.
ZOU Jun,GUO Yan,GUI Herong,et al. An experimental study on the yield strength of cement grout for grouting in the limestone area of a coal seam floor[J]. Coal Geology & Exploration,2025,53(4):182−190.
[96] 任连伟,李波,邹友峰,等. 废弃蒸压砌块与煤矸石在煤矿采空区地基加固中的试验研究[J]. 煤炭科学技术,2023,51(11):51−62.
REN Lianwei,LI Bo,ZOU Youfeng,et al. Experimental study on performance of waste autoclaved blocks and coal gangue in coal mine goaf ground grouting improvement[J]. Coal Science and Technology,2023,51(11):51−62.
[97] 李树志. 采煤沉陷区城市建设关键技术研究与应用[J]. 煤矿开采,2016,21(2):73−77.
LI Shuzhi. Studying and application of key technology of urban construction in mining subsidence area[J]. Coal Mining Technology,2016,21(2):73−77.
[98] 中华人民共和国交通运输部. 公路桥涵地基与基础设计规范:JTG 3363—2019[S]. 北京:人民交通出版社,2019.
[99] 陈绍杰,江宁,常西坤,等. 采煤塌陷地建设利用关键技术与实践[M]. 北京:科学出版社,2019.
[100] 朱广轶,孙传博,高智广,等. 采动地表稳定性评价与建筑抗变形工艺[J]. 沈阳大学学报(自然科学版),2019,31(1):39−43.
ZHU Guangyi,SUN Chuanbo,GAO Zhiguang,et al. Stability evaluation of mining foundation and building anti–deformation process[J]. Journal of Shenyang University (Natural Science),2019,31(1):39−43.
[101] 刘小平,李姗,刘新星,等. 煤矿采空区注浆治理工后质量检测技术与实践[J]. 煤田地质与勘探,2020,48(5):113−122.
LIU Xiaoping,LI Shan,LIU Xinxing,et al. Method and practice of quality test after grouting in coal mine goaf[J]. Coal Geology & Exploration,2020,48(5):113−122.
[102] 李凤明,丁鑫品,孙家恺. 我国采煤沉陷区生态环境现状与治理技术发展趋势[J]. 煤矿安全,2021,52(11):232−239.
LI Fengming,DING Xinpin,SUN Jiakai. Ecological environment status and development trend of governance technology of coal mining subsidence area in China[J]. Safety in Coal Mines,2021,52(11):232−239.
[103] 康红普,李全生,张玉军,等. 我国煤矿绿色开采与生态修复技术发展现状及展望[J]. 绿色矿山,2023,1(1):1−24.
KANG Hongpu,LI Quansheng,ZHANG Yujun,et al. Development status and prospect of green mining and ecological restoration technology of coal mines in China[J]. Journal of Green Mine,2023,1(1):1−24.
[104] 程洋,刘薇,张娜,等. 神东采煤沉陷区生态环境一体化监测技术与应用[J]. 煤田地质与勘探,2024,52(12):143−154.
CHENG Yang,LIU Wei,ZHANG Na,et al. An integrated ecosystem monitoring technology for coal mining subsidence areas and its application in the Shendong mining area[J]. Coal Geology & Exploration,2024,52(12):143−154.
[105] 师芸,李杰,吕杰,等. 结合SBAS–InSAR与支持向量回归的开采沉陷监测与预测[J]. 遥感信息,2021,36(2):6−12.
SHI Yun,LI Jie,LYU Jie,et al. Monitoring and prediction of mining subsidence based on SBAS–InSAR and improved support vector regression[J]. Remote Sensing Information,2021,36(2):6−12.
[106] 桂智琛,徐良骥,刘潇鹏,等. 基于时序InSAR的关闭矿井地表残余沉降监测[J]. 绿色矿山,2024,2(1):54−63.
GUI Zhichen,XU Liangji,LIU Xiaopeng,et al. Monitoring surface residual settlement of closed mines based on time series InSAR[J]. Journal of Green Mine,2024,2(1):54−63.
[107] 李学良,李宏艳,白国良. 基于静力水准的采空区地表变形监测及误差分析[J]. 煤炭技术,2024,43(2):154−158.
LI Xueliang,LI Hongyan,BAI Guoliang. Monitoring and error analysis of surface deformation in goaf based on static leveling[J]. Coal Technology,2024,43(2):154−158.
[108] 徐良骥,孙志豪,刘潇鹏,等. 基于Boltzmann时间函数的地表任意点沉陷动态预计[J]. 煤炭学报,2025,50(2):715−731.
XU Liangji,SUN Zhihao,LIU Xiaopeng,et al. Dynamic prediction of surface subsidence at any point based on Boltzmann time function model[J]. Journal of China Coal Society,2025,50(2):715−731.
[109] 顿志林,王文唱,邹友峰,等. 基于时间函数组合模型的采空区地表沉降动态预测及剩余变形计算[J]. 煤炭学报,2022,47(增刊1):13−28.
DUN Zhilin,WANG Wenchang,ZOU Youfeng,et al. Dynamic prediction of goaf surface subsidence and calculation of residual deformation based on time function combination model[J]. Journal of China Coal Society,2022,47(Sup.1):13−28.
[110] 潘红宇,赵云红,张卫东,等. 基于Adaboost的改进BP神经网络地表沉陷预测[J]. 煤炭科学技术,2019,47(2):161−167.
PAN Hongyu,ZHAO Yunhong,ZHANG Weidong,et al. Prediction of surface subsidence with improved BP neural network based on Adaboost[J]. Coal Science and Technology,2019,47(2):161−167.
[111] 薛永安,冀哲,张文志. 基于残差修正GM(1,1)模型的采空区残余变形预测研究[J]. 煤矿安全,2023,54(1):101−108.
XUE Yong’an,JI Zhe,ZHANG Wenzhi. Study on residual deformation prediction of goaf based on residual modified GM(1,1) model[J]. Safety in Coal Mines,2023,54(1):101−108.
[112] 贾宝新,周琳力. 层状介质采空塌陷区微震波传播速度模型构建[J]. 中国矿业大学学报,2022,51(4):674−688.
JIA Baoxin,ZHOU Linli. An improved microseismic wave propagation velocity model for layered media in the goaf subsidence area[J]. Journal of China University of Mining & Technology,2022,51(4):674−688.
[113] 杨显华,魏鹏,吕军,等. 基于多源遥感的采空塌陷识别技术应用研究[J]. 自然资源遥感,2022,34(2):162−167.
YANG Xianhua,WEI Peng,LYU Jun,et al. Application of mining collapse recognition technology based on multi–source remote sensing[J]. Remote Sensing for Natural Resources,2022,34(2):162−167.
[114] 张静,崔健,马诗敏,等. 基于层次分析法与频率比模型的采空塌陷危险性评价[J]. 地质与勘探,2024,60(1):88−94.
ZHANG Jing,CUI Jian,MA Shimin,et al. Risk assessment of goaf collapse based on analytic hierarchy process and frequency ratio model[J]. Geology and Exploration,2024,60(1):88−94.
[115] 杨宜军,李业,梁巍,等. 微震自动监测技术在荆门市A石膏矿采空区地面塌陷预警中的应用[J]. 安全与环境工程,2023,30(3):190−196.
YANG Yijun,LI Ye,LIANG Wei,et al. Application of microseismic automatic monitoring technology in early warning of ground collapse in a gypsum mining goaf of Jingmen City[J]. Safety and Environmental Engineering,2023,30(3):190−196.
[116] 彭桢,王宁. 无人机倾斜摄影测量在采空塌陷区生态综合治理中的应用[J]. 煤炭工程,2024,56(5):36−41.
PENG Zhen,WANG Ning. Application of UAV inclined photogrammetry in comprehensive ecological restoration of subsidence area above goafs[J]. Coal Engineering,2024,56(5):36−41.
[117] 王中伟. 废弃矿井资源利用,路在何方?——访中国工程院院士袁亮[N]. 中国煤炭报,2017-04-26(3).
[118] 王晓睿. 城市地下空间开发[M]. 北京:人民交通出版社,2018.
[119] 徐军祥,秦品瑞,徐秋晓,等. 地下空间资源开发利用地质评价[M]. 北京:地质出版社,2015.
[120] 崔超群. 废弃煤矿再利用评价模型及其应用研究[D]. 北京:中国矿业大学(北京),2021.
CUI Chaoqun. Research on evaluation models for abandoned coal mine reutilization and their applications[D]. Beijing:China University of Mining & Technology (Beijing),2021.
[121] 周一沫. 废弃煤矿地下空间开发利用评价研究[D]. 重庆:重庆大学,2020.
ZHOU Yimo. Research on evaluation of development and utilization of underground space in abandoned coal mines[D]. Chongqing:Chongqing University,2020.
[122] 谢和平,刘见中,高明忠,等. 特殊地下空间的开发利用[M]. 北京:科学出版社,2018.
[123] 王金南. 生态产品第四产业:理论与实践[M]. 北京:中国环境出版集团,2022.
[124] 夏玉成,孙学阳,苗霖田,等. 智能时代的矿井地质工作展望:矿井开采智能地质保障技术体系架构[J]. 煤田地质与勘探,2025,53(1):64−76.
XIA Yucheng,SUN Xueyang,MIAO Lintian,et al. Prospects for mine geological work in the intelligence age:Architecture of the intelligent geological guarantee technology system for mine exploitation[J]. Coal Geology & Exploration,2025,53(1):64−76.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons