Coal Geology & Exploration
Abstract
Objective Given the issues of large mine water drainage in coal mines in China, as well as the corresponding high treatment cost and low utilization rate, thoroughly investigating efficient, environmentally friendly, economically feasible mine water treatment technologies is the key to the green transformation and the implementation of the sustainable development strategy in the coal industry. Deep geological storage of mine water represents an emerging technology for mine water treatment, enjoying the advantages of low cost and zero emissions. A key step in the application of this technology is to select suitable target reservoirs. Although relevant studies have proposed some criteria for the selection, there is an urgent need to develop methods for quantitative selection and evaluation. Methods Using a fuzzy comprehensive evaluation method and the analytic hierarchy process (AHP), this study proposed a suitability evaluation index system for the deep geological storage of mine water in the Ordos Basin and developed an evaluation method. Specifically, the evaluation indices were selected based on geologic stability, storage potential, and hydrogeological conditions. Then, based on the geological characteristics of the first-order tectonic units and deep strata in the basin, the scores and weights of individual evaluation indices of the tectonic units were determined. Finally, the comprehensive suitability score was calculated by combining the weights. Results and Conclusions The analysis and calculation of geological conditions reveal that the Ordos Basin has a potential geological storage capacity for liquids of 9.78×1012 m3, suggesting great storage potential. The evaluation method and indices were proposed in combination with the geological characteristics of the Ordos Basin. The evaluation indices included three first-level and 12 second-level indices for the suitability evaluation of tectonic units, as well as four first-level and 19 second-level evaluation indices for the suitability evaluation of deep strata. The evaluation results reveal that the slope tectonic unit in northern Shaanxi is the most suitable area for deep mine water storage. Within this slope, the suitable deep reservoirs include the reservoir-cap rock assemblages of the Ermaying, Heshanggou, and Liujiagou formations, as well as the self-reservoir-self-caprock assemblage of the Majiagou Formation. The results of this study provide a basis for selecting the preferential areas for mine water storage for experiments.
Keywords
mine water, deep geological storage, storage potential, suitability evaluation, Ordos Basin
DOI
10.12363/issn.1001-1986.25.04.0261
Recommended Citation
GULBOSTAN Tursun, SUI Wanghua, AIBIBAI Mamat,
et al.
(2025)
"Suitability evaluation for deep geological storage of mine water in the Ordos Basin,"
Coal Geology & Exploration: Vol. 53:
Iss.
7, Article 20.
DOI: 10.12363/issn.1001-1986.25.04.0261
Available at:
https://cge.researchcommons.org/journal/vol53/iss7/20
Reference
[1] 艾雨露,陈宏坪,陈梦舫,等. 全球主要产煤国煤矿AMD污染特征与治理技术[J]. 煤炭学报,2023,48(12):4521−4535.
AI Yulu,CHEN Hongping,CHEN Mengfang,et al. Characteristics and treatment technologies for acid mine drainage from abandoned coal mines in major coal–producing countries[J]. Journal of China Coal Society,2023,48(12):4521−4535.
[2] 顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089.
GU Dazhao,LI Jingfeng,CAO Zhiguo,et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089.
[3] 武强,王志强,郭周克,等. 矿井水控制、处理、利用、回灌与生态环保五位一体优化结合研究[J]. 中国煤炭,2010,36(2):109−112.
WU Qiang,WANG Zhiqiang,GUO Zhouke,et al. A research on an optimized five–in–one combination of mine water control,treatment,utilization,back–filling and environment friendly treatment[J]. China Coal,2010,36(2):109−112.
[4] 张春晖,赵桂峰,苏佩东,等. 基于“深地–井下–地面”联动的煤矿矿井水处理利用模式初探[J]. 矿业科学学报,2024,9(1):1−12.
ZHANG Chunhui,ZHAO Guifeng,SU Peidong,et al. Treatment and utilization of coal mine water based on “deep ground–underground–surface ground” linkage system[J]. Journal of Mining Science and Technology,2024,9(1):1−12.
[5] 郭强. 煤矿矿井水井下处理及废水零排放技术进展[J]. 洁净煤技术,2018,24(1):33−37.
GUO Qiang. Technical progress of underground mine water treatment and zero discharge of waste water[J]. Clean Coal Technology,2018,24(1):33−37.
[6] 孙亚军,李鑫,冯琳,等. 鄂尔多斯盆地煤–水协调开采下矿区水资源异位回灌–存储技术思路[J]. 煤炭学报,2022,47(10):3547−3560.
SUN Yajun,LI Xin,FENG Lin,et al. Technical thinking on ectopic injection and storage of mine area water resources under the coordinated exploitation of coal and water background in Ordos Basin[J]. Journal of China Coal Society,2022,47(10):3547−3560.
[7] 李世峰,高文婷,牛永强,等. 矿井废水回灌工程试验研究[J]. 河北工程大学学报(自然科学版),2012,29(4):66−70.
LI Shifeng,GAO Wenting,NIU Yongqiang,et al. The experimental study on recharge engineering of mine wastewater[J]. Journal of Hebei University of Engineering (Natural Science Edition),2012,29(4):66−70.
[8] 晏嘉. 鄂尔多斯盆地三叠系刘家沟组砂岩含水层可注性探讨[J]. 采矿技术,2023,23(5):219−223.
[9] 曾繁富,左明星,宋洪柱,等. 乌审旗一带刘家沟组作为高矿化度矿井水回灌目的层的可行性分析[J]. 煤炭与化工,2020,43(11):59−62.
ZENG Fanfu,ZUO Mingxing,SONG Hongzhu,et al. Feasibility analysis of the Liujiagou Group in the Wushen Banner area as a target layer for water recharge in highly mineralized mines[J]. Coal and Chemical Industry,2020,43(11):59−62.
[10] 李志明. 高矿化度矿井水回灌技术分析[J]. 中国煤炭,2010,36(11):111−113.
LI Zhiming. Analysis of the super mineralized mine–water back–filling technology[J]. China Coal,2010,36(11):111−113.
[11] CHEN Ge,XU Zhimin,SUN Yajun,et al. Minewater deep transfer and storage[J]. Journal of Cleaner Production,2022,332:129848.
[12] 徐浩. 鄂尔多斯盆地煤系矿产资源赋存规律的构造控制研究[D]. 北京:中国矿业大学(北京),2017.
XU Hao. Occurrence characteristics and tectonic controls of coal series mineral resources in Ordos Basin[D]. Beijing:China University of Mining & Technology (Beijing),2017.
[13] 徐黎明,周立发,张义楷,等. 鄂尔多斯盆地构造应力场特征及其构造背景[J]. 大地构造与成矿学,2006,30(4):455−462.
XU Liming,ZHOU Lifa,ZHANG Yikai,et al. Characteristics and tectonic setting of tectono–stress field of Ordos Basin[J]. Geotectonica et Metallogenia,2006,30(4):455−462.
[14] 侯光才,张茂省,刘方. 鄂尔多斯盆地地下水勘查研究[M]. 北京:地质出版社,2008.
[15] 苏旭楠. 刘家沟组作为矿井水深部转移存储目的层可行性分析[J]. 中国煤炭地质,2022,34(增刊2):47−53.
SU Xunan. Feasibility analysis of Liujiagou Formation as the target layer of deep divert and storage of mine water[J]. Coal Geology of China,2022,34(Sup.2):47−53.
[16] 李鑫,孙亚军,陈歌,等. 高矿化度矿井水深部转移存储介质条件及影响机制[J]. 煤田地质与勘探,2021,49(5):17−28.
LI Xin,SUN Yajun,CHEN Ge,et al. Medium conditions and influence mechanism of high salinity mine water transfer and storage by deep well recharge[J]. Coal Geology & Exploration,2021,49(5):17−28.
[17] 刘琪,汪韦峻,罗斌,等. 高盐矿井水深部转移存储介质特征与水动力演化规律[J]. 煤田地质与勘探,2021,49(5):29−35.
LIU Qi,WANG Weijun,LUO Bin,et al. Medium characteristics and hydrodynamic evolution law of high salinity mine water recharge in deep well[J]. Coal Geology & Exploration,2021,49(5):29−35.
[18] 何青. 鄂尔多斯盆地深部咸含水层CO2地质储存适宜性及潜力评价[D]. 武汉:中国地质大学,2013.
HE Qing. Assessment the suitability and potential for CO2,geological sequestration in deep saline aquifers of Ordos Basin[D]. Wuhan:China University of Geosciences,2013.
[19] 刘桂珍,孙毛宁,叶凯,等. 鄂尔多斯盆地延长组储层质量差异化和影响因素[J]. 新疆地质,2023,41(4):562−569.
LIU Guizhen,SUN Maoning,YE Kai,et al. Differences in reservoir quality and influencing factors of Yanchang Formation in the Ordos Basin[J]. Xinjiang Geology,2023,41(4):562−569.
[20] 武富礼,李文厚,李玉宏,等. 鄂尔多斯盆地上三叠统延长组三角洲沉积及演化[J]. 古地理学报,2004,6(3):307−315.
WU Fuli,LI Wenhou,LI Yuhong,et al. Delta sediments and evolution of the Yanchang Formation of Upper Triassic in Ordos Basin[J]. Journal of Palaeogeography,2004,6(3):307−315.
[21] 张志军. 鄂尔多斯盆地东北部下三叠统刘家沟组砂岩岩石学特征研究[J]. 中国煤炭地质,2022,34(9):18−26.
ZHANG Zhijun. Study on the characteristics of sandstone in the Lower Triassic Liujiagou Formation in the northeastern of the Ordos Basin[J]. Coal Geology of China,2022,34(9):18−26.
[22] 余继峰,胡晓珂,吴孟韩,等. 东濮凹陷上古生界石千峰组致密砂岩储层特征[J]. 中国煤炭地质,2021,33(2):25−29.
YU Jifeng,HU Xiaoke,WU Menghan,et al. Upper Paleozoic Shiqianfeng Formation tight sandstone reservoir features in Dongpu Depression[J]. Coal Geology of China,2021,33(2):25−29.
[23] 万玉玉. 鄂尔多斯盆地石千峰组咸水层CO2地质储存中CO2的迁移转化特征[D]. 长春:吉林大学,2012.
WAN Yuyu. Migration and transformation of CO2 in CO2 geological sequestration process of Shiqianfeng saline aquifers in Ordos Basin[D]. Changchun:Jilin University,2012.
[24] 梁状,刘钰铭,陈齐,等. 鄂尔多斯盆地佳县地区本溪组–下石盒子组致密砂岩储层差异化成岩特征及成储效应[J]. 天然气地球科学,2025,36(1):97−113.
LIANG Zhuang,LIU Yuming,CHEN Qi,et al. Differential diagenetic characteristics and its reservoir formation effect of tight sandstone in the Benxi–Lower Shihezi Formations in Jiaxian area,Ordos Basin[J]. Natural Gas Geoscience,2025,36(1):97−113.
[25] 樊宇洁,孟祥振,蒲仁海,等. 鄂尔多斯盆地延长探区本溪组物源分析[J]. 地质科技通报,2025,44(3):197−211.
FAN Yujie,MENG Xiangzhen,PU Renhai,et al. Provenance analysis of Benxi Formation in the Yanchang exploration area of the Ordos Basin[J]. Bulletin of Geological Science and Technology,2025,44(3):197−211.
[26] 赵喆,徐旺林,赵振宇,等. 鄂尔多斯盆地石炭系本溪组煤岩气地质特征与勘探突破[J]. 石油勘探与开发,2024,51(2):234−247.
ZHAO Zhe,XU Wanglin,ZHAO Zhenyu,et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China[J]. Petroleum Exploration and Development,2024,51(2):234−247.
[27] 牛小兵,吴东旭,刘新社,等. 鄂尔多斯盆地马家沟组中–下组合岩相古地理演化及储层分布规律[J]. 地质科学,2024,59(3):625−636.
NIU Xiaobing,WU Dongxu,LIU Xinshe,et al. Paleogeographic evolution of the middle and lower assemblages of the Majiagou Formation in the Ordos Basin and the pattern of reservoir distribution[J]. Chinese Journal of Geology,2024,59(3):625−636.
[28] 吴东旭,周进高,任军峰,等. 鄂尔多斯盆地奥陶系马家沟组沉积环境恢复与源储配置关系[J]. 地球科学,2023,48(2):553−567.
WU Dongxu,ZHOU Jingao,REN Junfeng,et al. Reconstruction of depositional environment and source–reservoir configuration relationship of Ordovician Majiagou Formation in Ordos Basin[J]. Earth Science,2023,48(2):553−567.
[29] 杜松,范莹琳,崔文瑞,等. 东胜煤田地质封存三维深地建模[J]. 煤炭工程,2024,56(7):151−158.
DU Song,FAN Yinglin,CUI Wenrui,et al. Three–dimensional deep modeling of geological storage for Dongsheng coalfield in northeastern Ordos Basin[J]. Coal Engineering,2024,56(7):151−158.
[30] 徐安娜,穆龙新,裘怿楠. 我国不同沉积类型储集层中的储量和可动剩余油分布规律[J]. 石油勘探与开发,1998,25(5):41−44.
XU Anna,MU Longxin,QIU Yinan. Distribution pattern of OOIP and remaining mobile oil in different types of sedimentary reservoir of China[J]. Petroleum Exploration and Development,1998,25(5):41−44.
[31] 李琦,匡冬琴,刘桂臻,等. 酸气回注:以土库曼斯坦阿姆河右岸封存场地适应性评价为例[J]. 地质论评,2014,60(5):1133−1146.
LI Qi,KUANG Dongqin,LIU Guizhen,et al. Acid gas injection:A suitability evaluation for sequestration site in Amu Darya Basin,Turkmenistan[J]. Geological Review,2014,60(5):1133−1146.
[32] 郭艳琴,李文厚,郭彬程,等. 鄂尔多斯盆地沉积体系与古地理演化[J]. 古地理学报,2019,21(2):293−320.
GUO Yanqin,LI Wenhou,GUO Bincheng,et al. Sedimentary systems and Palaeogeography evolution of Ordos Basin[J]. Journal of Palaeogeography (Chinese Edition),2019,21(2):293−320.
[33] 祁生文,郑博文,王赞,等. 二氧化碳地质利用与封存场址的地质评价[J]. 中国科学:地球科学,2023,53(9):1937−1957.
QI Shengwen,ZHENG Bowen,WANG Zan,et al. Geological evaluation for the carbon dioxide geological utilization and storage (CGUS) site:A review[J]. Science China:Earth Sciences,2023,53(9):1937−1957.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons