Coal Geology & Exploration
Abstract
Background During underground coal mining, water-sand mixtures within faults may rush into mine floors. The water-sand inrushes are especially prominent under the conditions of high water-yield properties and loose filling structures in fault zones, severely threatening the safe mining of coal mines. Previous studies focus primarily on the impact of a single factor on inrushes. Hence, it is significant to systematical investigate the regularity of water-sand inrushes within faults under the combined effects of multiple factors. Methods Based on the fluid and granular mechanic theories, this study derived the instability criterion and flow formulas of water-sand mixtures. Using orthogonal experiments on three factors at four levels, along with a deformations-seepage test system for fractured rocks, this study investigated the impacts of clay mass fraction, sand-grain size, and initial water pressure on the inrush behavior. Results and Conclusions Clay significantly inhibited the inrush behavior. Under a clay mass fraction of 40%, the inrush behavior exhibited extremely low flow and load. The initial water pressure served as the primary force driving the inrush behavior. An increase in initial water pressure significantly enhanced the inrush intensity. The sand grain size manifested a nonlinearly regulating effect on the inrush behavior. Small or large sand grain sizes were prone to cause system instability, while moderate grain sizes could balance permeability and system stability. The multivariate statistical analysis reveals that the impacts of various factors on the inrush behavior decreased in the order of clay content, initial water pressure, and sand-grain size. The predicted optimal test conditions to minimize the flow, load, and pore water pressure include a clay mass fraction of 30%, an initial water pressure of 0.3 MPa, and sand grain size ranges of [0.3, 0.5] mm, [1, 2] mm, and [0.5, 1.0) mm, respectively. The results of this study will provide a theoretical basis for the prevention and control of water-sand inrushes caused by mining-induced fault activation.
Keywords
coal mine, fault activation, water-sand mixture, water inrush, orthogonal experiment, influential factor, instability criterion
DOI
10.12363/issn.1001-1986.25.03.0182
Recommended Citation
ZHANG Shichuan, HUANG Pu, LI Yangyang,
et al.
(2025)
"Regularity and mechanisms of water-sand inrushes within mining-activated faults,"
Coal Geology & Exploration: Vol. 53:
Iss.
7, Article 13.
DOI: 10.12363/issn.1001-1986.25.03.0182
Available at:
https://cge.researchcommons.org/journal/vol53/iss7/13
Reference
[1] 国家统计局. 中华人民共和国2024年国民经济和社会发展统计公报[N]. 人民日报,2025-03-01(5).
[2] 王国法,李世军,张金虎,等. 筑牢煤炭产业安全 奠定能源安全基石[J]. 中国煤炭,2022,48(7):1−9.
WANG Guofa,LI Shijun,ZHANG Jinhu,et al. Ensuring the safety of coal industry to lay the cornerstone of energy security[J]. China Coal,2022,48(7):1−9.
[3] 康永水,周秀斌,刘滨,等. 充填型岩石节理剪切力学特性研究进展[J]. 岩土力学,2024,45(12):3576−3595.
KANG Yongshui,ZHOU Xiubin,LIU Bin,et al. Research progress on shear mechanical behavior of filled rock joints[J]. Rock and Soil Mechanics,2024,45(12):3576−3595.
[4] 许胜利,孙玉红,王彬,等. 井–震结合下的断裂破碎带规模识别与应用[J]. 石油地质与工程,2024,38(4):17−23.
XU Shengli,SUN Yuhong,WANG Bin,et al. A identification and application of the faulted–fractured zone scale under combination of well and seismic[J]. Petroleum Geology and Engineering,2024,38(4):17−23.
[5] 严荣富. 采动–断层双重影响下竖井变形破坏规律及机制研究[D]. 北京:北京科技大学,2023.
YAN Rongfu. Law and mechanism of shaft deformation and failure under the dual influence of mining and fault[D]. Beijing:University of Science and Technology Beijing,2023.
[6] 杨善安. 采场底板断层突水及其防治方法[J]. 煤炭学报,1994,19(6):620−625.
YANG Shan’an. Prevention and control of water inrush from faults in floor rocks in the workings[J]. Journal of China Coal Society,1994,19(6):620−625.
[7] 韩科明,于秋鸽,张华兴,等. 上下盘开采影响下断层滑移失稳力学机制[J]. 煤炭学报,2020,45(4):1327−1335.
HAN Keming,YU Qiuge,ZHANG Huaxing,et al. Mechanism of fault activation when mining on hanging–wall and foot–wall[J]. Journal of China Coal Society,2020,45(4):1327−1335.
[8] LI Gongyu,ZHOU Wanfang. Impact of karst water on coal mining in North China[J]. Environmental Geology,2006,49(3):449−457.
[9] MOKHOV A V. Fissuring due to inundation of coal mines and its hydrodynamic implications[J]. Doklady Earth Sciences,2007,414(4):519−521.
[10] 郭惟嘉,刘杨贤. 底板突水系数概念及其应用[J]. 河北煤炭,1989(2):56−60.
[11] 曾一凡,朱慧聪,武强,等. 我国不同类别煤层底板水害致灾机理与防控远景导向[J]. 煤炭学报,2025,50(2):1073−1099.
ZENG Yifan,ZHU Huicong,WU Qiang,et al. Disaster–causing mechanism and prevention and control vision orientation of different types of coal seam floor water disasters in China[J]. Journal of China Coal Society,2025,50(2):1073−1099.
[12] 李利平,李术才,石少帅,等. 基于应力–渗流–损伤耦合效应的断层活化突水机制研究[J]. 岩石力学与工程学报,2011,30(增刊1):3295−3304.
LI Liping,LI Shucai,SHI Shaoshuai,et al. Water inrush mechanism study of fault activation induced by coupling effect of stress–seepage–damage[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(Sup.1):3295−3304.
[13] 孙文斌,张纪扬,陈东伟. 以断层活化突水事故为例的煤矿灾害感知研究[J]. 有色设备,2024,38(2):24−31.
SUN Wenbin,ZHANG Jiyang,CHEN Dongwei. Research on perception of coal mine disasters:A case study of water inrush accidents triggered by fault activation[J]. Nonferrous Metallurgical Equipment,2024,38(2):24−31.
[14] 黄波,贾方晶. 动静载荷作用下矿井底板断层突水机制研究[J]. 工程爆破,2024,30(3):46−53.
HUANG Bo,JIA Fangjing. Study on the mechanism of burst water of mine floor fault under dynamic and static loads[J]. Engineering Blasting,2024,30(3):46−53.
[15] 李浩,朱开鹏,郭国强,等. 大变幅加卸载下特厚煤层底板断层突水机理模拟研究[J]. 煤田地质与勘探,2024,52(5):118−128.
LI Hao,ZHU Kaipeng,GUO Guoqiang,et al. A simulation study of mechanisms behind water inrush from fault–bearing floors of ultra–thick coal seams under loading and unloading at significantly variable amplitude[J]. Coal Geology & Exploration,2024,52(5):118−128.
[16] 李见波,陈新明,贾明奎. 断层上下盘采动活化突水数值模拟研究[J]. 煤炭工程,2012,44(6):86−88.
[17] 刘雨生,孟祥瑞,程详,等. 逆断层上下盘开采扰动下断层活化响应模拟研究[J]. 中国安全生产科学技术,2024,20(8):33−41.
LIU Yusheng,MENG Xiangrui,CHENG Xiang,et al. Simulation study on fault activation response under mining disturbance of hanging–wall and foot–wall of reverse fault[J]. Journal of Safety Science and Technology,2024,20(8):33−41.
[18] 张平松,欧元超. 煤层采动底板突水物理模拟试验研究进展与展望[J]. 煤田地质与勘探,2024,52(6):44−56.
ZHANG Pingsong,OU Yuanchao. Physical simulation experiments on mining–induced water inrushes from coal seam floors:Advances in research and prospects[J]. Coal Geology & Exploration,2024,52(6):44−56.
[19] 田雨桐,张平松,吴荣新,等. 煤层采动条件下断层活化研究的现状分析及展望[J]. 煤田地质与勘探,2021,49(4):60−70.
TIAN Yutong,ZHANG Pingsong,WU Rongxin,et al. Research status and prospect of fault activation under coal mining conditions[J]. Coal Geology & Exploration,2021,49(4):60−70.
[20] 武强,周英杰,刘金韬,等. 煤层底板断层滞后型突水时效机理的力学试验研究[J]. 煤炭学报,2003,28(6):561−565.
WU Qiang,ZHOU Yingjie,LIU Jintao,et al. The mechanical experiment study on lag mechanism of water–bursting of fault under coal seam[J]. Journal of China Coal Society,2003,28(6):561−565.
[21] 孙文斌,杨辉,赵金海,等. 断层突水灾变演化过程划分基础试验研究[J]. 煤炭科学技术,2023,51(7):118−128.
SUN Wenbin,YANG Hui,ZHAO Jinhai,et al. Basic experimental research on the delineation of the evolutionary process of fault water inrush[J]. Coal Science and Technology,2023,51(7):118−128.
[22] 朱光丽,张文泉,张贵彬,等. 采动诱发断层活化导水试验研究[J]. 岩土力学,2017,38(11):3163−3172.
ZHU Guangli,ZHANG Wenquan,ZHANG Guibin,et al. Experimental study on fault activation conducting water inrush[J]. Rock and Soil Mechanics,2017,38(11):3163−3172.
[23] ZHANG Shichuan,GUO Weijia,LI Yangyang,et al. Experimental simulation of fault water inrush channel evolution in a coal mine floor[J]. Mine Water and the Environment,2017,36(3):443−451.
[24] 姚辉,尹慧超,梁满玉,等. 机器学习方法在矿井水防治理论体系研究中的应用思考[J]. 煤田地质与勘探,2024,52(5):107−117.
YAO Hui,YIN Huichao,LIANG Manyu,et al. Some reflections on the application of machine learning to research into the theoretical system of mine water prevention and control[J]. Coal Geology & Exploration,2024,52(5):107−117.
[25] 白继文,李术才,刘人太,等. 深部岩体断层滞后突水多场信息监测预警研究[J]. 岩石力学与工程学报,2015,34(11):2327−2335.
BAI Jiwen,LI Shucai,LIU Rentai,et al. Multi–field information monitoring and warning of delayed water bursting in deep rock fault[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2327−2335.
[26] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256−2264.
JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256−2264.
[27] 张英. 水–力耦合作用下裂隙岩体渗流规律与突水机理研究[D]. 北京:北京科技大学,2020.
ZHANG Ying. Study on the seepage regularity and water inrush mechanism of fracture rock mass under coupling action of stress field and hydraulic force[D]. Beijing:University of Science and Technology Beijing,2020.
[28] 浦海,郭世儒,刘德俊,等. 基于LBM–DEM耦合方法的突水溃砂运移规律研究[J]. 煤炭科学技术,2021,49(2):206−216.
PU Hai,GUO Shiru,LIU Dejun,et al. Study on laws of water inrush and sand burst migration based on LBM–DEM coupling method[J]. Coal Science and Technology,2021,49(2):206−216.
[29] 赵维生,梁维,许猛堂,等. 基于黏土含量的弱胶结地层巷道稳定性分析[J]. 煤矿安全,2020,51(12):277−282.
ZHAO Weisheng,LIANG Wei,XU Mengtang,et al. Stability analysis of roadway in weakly consolidated formation based on clay mineral content[J]. Safety in Coal Mines,2020,51(12):277−282.
[30] 杨建,陈家军,杨周喜,等. 松散砂粒孔隙结构、孔隙分形特征及渗透率研究[J]. 水文地质工程地质,2008,35(3):93−98.
YANG Jian,CHEN Jiajun,YANG Zhouxi,et al. A study of pore structure,pore fractal feature and permeability of unconsolidated sand[J]. Hydrogeology & Engineering Geology,2008,35(3):93−98.
[31] CHILDS E C. Dynamics of fluids in porous media[J]. Engineering Geology,1973,7(2):174−175.
[32] 包孟碟,朱俊高,吴二鲁,等. 基于级配方程的粗粒土渗透系数经验公式及其验证[J]. 岩土工程学报,2020,42(8):1571−1576.
BAO Mengdie,ZHU Jungao,WU Erlu,et al. Empirical formula for permeability coefficient of coarse grained soil based on gradation equation and its verification[J]. Chinese Journal of Geotechnical Engineering,2020,42(8):1571−1576.
[33] 赵贵章,孔令莹,徐远志,等. 银川平原典型介质的颗粒级配对渗透系数的影响研究[J]. 中国农村水利水电,2023(4):203−207.
ZHAO Guizhang,KONG Lingying,XU Yuanzhi,et al. The influence of the particle size on permeability coefficient of typical medium in Yinchuan Plains[J]. China Rural Water and Hydropower,2023(4):203−207.
[34] 王海龙,陈绍杰,郭惟嘉. 水砂突涌试验系统研制与应用[J]. 采矿与安全工程学报,2019,36(1):72−79.
WANG Hailong,CHEN Shaojie,GUO Weijia. Development and application of test system for water–sand inrush[J]. Journal of Mining & Safety Engineering,2019,36(1):72−79.
[35] 董如何,肖必华,方永水. 正交试验设计的理论分析方法及应用[J]. 安徽建筑工业学院学报(自然科学版),2004,12(6):103−106.
DONG Ruhe,XIAO Bihua,FANG Yongshui. The theoretical analysis of orthogonal test designs[J]. Journal of Anhui Institute of Architecture & Industry,2004,12(6):103−106.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons