•  
  •  
 

Coal Geology & Exploration

Abstract

Background Grouting in surrounding rocks serves as a conventional approach to controlling disasters in coal mine roadways. The developmental degree of fractures significantly influences the reinforcement and sealing effects of grouting. Methods To determine the changes in the impermeability of fractured surrounding rocks before and after grouting, this study investigated sandstones—the most common sedimentary rocks in coal mines. Using laboratory experiments and numerical simulations, this study explored the permeability variations of sandstone specimens with varying fracture numbers under different confining pressures and assessed the impact of grouting on their seepage performance. Through triaxial compression-seepage experiments using a Rock Top multi-field coupling experimental apparatus, this study investigated the stress-strain behavior and permeability variations of sandstone specimens with different numbers (1, 2, and 3) of fractures before and after grouting under confining pressures of 6 MPa, 8 MPa, and 10 MPa. Results and Conclusions The ratio of the permeability of the fractured sandstones after grouting to that before grouting is defined as the grouting repair coefficient (Zs). Experiments indicate that a lower grouting repair coefficient is associated with a higher repair degree of the permeability. Under the same confining pressure, the permeability of the sandstone specimens increased to 27.6 to 283.4 times and decreased by 64.32% to 98.47% compared to their original permeability before and after grouting, respectively as the fracture number increased, with the grouting repair coefficient exhibiting a power-law decreasing trend. Under the same fracture number, when the confining pressure increased from 6 MPa to 8 MPa and 10 MPa, the permeability of the sandstone specimens decreased by 48.42% to 85.30% before grounting and by 53.89% to 90.14% after grouting. Regarding the failure characteristics before and after grouting, fractures in the sandstone specimens propagated gradually from their ends to adjacent fractures and thus were interconnected with the latter as the fracture number increased, leading to the formation of more complex failure patterns and more secondary cracks. Based on engineering practice, random fractures were generated at a ratio of 1:100 relevant to the original fracture numbers (i.e., 1, 2, and 3) using software COMSOL and Matlab. The analysis of water flow velocity and grouting effects of the mining face roof and the bottom boundary of the sandstone aquifer verified the conclusion that more fractures within a certain range corresponded to a higher repair degree for sandstone permeability after grouting. This conclusion will provide strong technical support and scientific guidance for the safe mining of coal resources and disaster prevention and control.

Keywords

coal mine, fracture number, reinforcement via grouting, seepage characteristic, numerical simulation, failure characteristic, disaster prevention and control

DOI

10.12363/issn.1001-1986.25.04.0275

Reference

[1] 张进鹏,李扬,赵炜,等. 不同岩石强度裂隙岩体约束自应力浆液加固试验研究与应用[J]. 煤炭学报,2023,48(9):3347−3359.

ZHANG Jinpeng,LI Yang,ZHAO Wei,et al. Test and application of self–stress slurry reinforcement for fractured rock masses with different strength[J]. Journal of China Coal Society,2023,48(9):3347−3359.

[2] 曾一凡,武强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1−14.

ZENG Yifan,WU Qiang,ZHAO Suqi,et al. Characteristics,causes,and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology,2023,51(7):1−14.

[3] 柳昭星,张旗. 奥陶系灰岩顶部劈裂注浆裂隙起裂机制PFC数值分析[J]. 煤田地质与勘探,2023,51(10):72−85.

LIU Zhaoxing,ZHANG Qi. PFC numerical analysis on crack initiation mechanism of fracture grouting in top of Ordovician limestone[J]. Coal Geology & Exploration,2023,51(10):72−85.

[4] 陈军涛,朱君,刘磊,等. 定向区域注浆三维模拟试验系统研制及应用[J]. 煤炭科学技术,2023,51(7):179−186.

CHEN Juntao,ZHU Jun,LIU Lei,et al. Development and application of a three–dimensional simulation test system for directional regional grouting[J]. Coal Science and Technology,2023,51(7):179−186.

[5] 张二蒙,沈星宇,苗葳,等. 奥灰顶部含水层注浆改造浆液扩散主要影响因素试验研究[J]. 煤炭学报,2021,46(11):3536−3549.

ZHANG Ermeng,SHEN Xingyu,MIAO Wei,et al. Experimental study on the influence of grouting diffusion in fissure aquifer at the top Ordovician limestone[J]. Journal of China Coal Society,2021,46(11):3536−3549.

[6] 胡少银,刘泉声,李世辉,等. 裂隙岩体注浆理论研究进展及展望[J]. 煤炭科学技术,2022,50(1):112−126.

HU Shaoyin,LIU Quansheng,LI Shihui,et al. Advance and review on grouting critical problems in fractured rock mass[J]. Coal Science and Technology,2022,50(1):112−126.

[7] 秦鹏飞,朱翔,周想云. 基于分形理论的裂隙岩体渗透注浆机理研究[J]. 煤炭学报,2024,49(增刊2):845−851.

QIN Pengfei,ZHU Xiang,ZHOU Xiangyun. Research on the mechanism of seepage grouting in fractal rock mass based on fractal theory[J]. Journal of China Coal Society,2024,49(Sup.2):845−851.

[8] 余伟健,周明娟. 不同次裂隙数目条件下岩石力学特性及破坏模式[J]. 采矿与安全工程学报,2025,42(2):394−403.

YU Weijian,ZHOU Mingjuan. Rock mechanics characteristics and failure modes under different number of secondary fractures[J]. Journal of Mining & Safety Engineering,2025,42(2):394−403.

[9] 陈军涛,喻军健,李果,等. 含不同裂隙数量砂岩注浆前后力学特性试验研究[J]. 岩石力学与工程学报,2025,44(7):1767−1781.

CHEN Juntao,YU Junjian,LI Guo,et al. Experimental investigation on the mechanical properties of sandstone with different numbers of fractures before and after grouting[J]. Chinese Journal of Rock Mechanics and Engineering,2025,44(7):1767−1781.

[10] 王娟,王星,袁超,等. 不同裂隙数量砂岩体力学性状演变规律试验研究[J]. 河南科技大学学报(自然科学版),2023,44(5):56−64.

WANG Juan,WANG Xing,YUAN Chao,et al. Experimental study on evolution law of mechanical properties of sandstone with different fracture numbers[J]. Journal of Henan University of Science and Technology (Natural Science),2023,44(5):56−64.

[11] 杨超,冯振华,王鑫,等. 多级时效荷载下双裂隙砂岩变形与破裂特征试验研究[J]. 岩石力学与工程学报,2017,36(9):2092−2101.

YANG Chao,FENG Zhenhua,WANG Xin,et al. Experimental research on deformation and crack coalescence properties of sandstone containing two pre–existing fissures under multistage time–dependent loading[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(9):2092−2101.

[12] 陈结,孟历德仁,崔义,等. 基于声光联合试验的预制双裂隙砂岩损伤演化特征研究[J]. 岩石力学与工程学报,2025,44(1):30−42.

CHEN Jie,MENGLI Deren,CUI Yi,et al. Study on the damage evolution characteristics of prefabricated double–fracture sandstone based on acoustic–optical combined tests[J]. Chinese Journal of Rock Mechanics and Engineering,2025,44(1):30−42.

[13] 张旭龙,张盛,安定超,等. 平行双裂缝圆盘试样裂纹扩展过程的尺寸效应试验研究[J]. 岩石力学与工程学报,2023,42(1):115−128.

ZHANG Xulong,ZHANG Sheng,AN Dingchao,et al. Experimental study on the size effect of crack propagation process of disk samples containing parallel double pre–existing flaws[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(1):115−128.

[14] 宁佳祺,冯子军,高祺. 裂隙–孔隙双重介质模型下的复杂裂隙岩体示踪传质特性[J]. 科学技术与工程,2025,25(7):2904−2913.

NING Jiaqi,FENG Zijun,GAO Qi. Tracer migration characteristics of complex fractured rock mass under fracture–porosity dual media model[J]. Science Technology and Engineering,2025,25(7):2904−2913.

[15] 刘新荣,张吉禄,周小涵,等. 考虑轴向应力作用的贯通裂隙岩体变形及渗流特性研究[J]. 岩土力学,2024,45(12):3596−3612.

LIU Xinrong,ZHANG Jilu,ZHOU Xiaohan,et al. Deformation and seepage characteristics of precast fractured rock mass considering the influence of axial stress[J]. Rock and Soil Mechanics,2024,45(12):3596−3612.

[16] 曹成,许增光,柴军瑞,等. 剪切破坏过程中岩体单裂隙力学及非线性渗流特性试验研究[J]. 应用力学学报,2024,41(6):1237−1244.

CAO Cheng,XU Zengguang,CHAI Junrui,et al. Experimental study on mechanical and nonlinear seepage of single rock mass fracture with shear failure[J]. Chinese Journal of Applied Mechanics,2024,41(6):1237−1244.

[17] 张永亮,曲敏,陈世强,等. 裂隙倾角对典型海底金属矿多裂隙围岩流热耦合的影响[J]. 中国安全科学学报,2023,33(10):71−78.

ZHANG Yongliang,QU Min,CHEN Shiqiang,et al. Effect of fracture dip angle on flow–thermal coupling of multi–fractured surrounding rocks in typical submarine metal mine[J]. China Safety Science Journal,2023,33(10):71−78.

[18] 张培森,许大强,张睿,等. 不同围压及循环载荷下砂岩的渗流、力学特性试验研究[J]. 岩石力学与工程学报,2022,41(12):2432−2450.

ZHANG Peisen,XU Daqiang,ZHANG Rui,et al. Experimental study on seepage and mechanical properties of sandstone under different confining pressures and cyclic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(12):2432−2450.

[19] 张培森,许大强,李腾辉,等. 裂隙砂岩注浆前后渗流特性及注浆后力学特性试验研究[J]. 岩土力学,2023,44(增刊1):12−26.

ZHANG Peisen,XU Daqiang,LI Tenghui,et al. Experimental study of seepage characteristics before and after grouting and mechanical characteristics after grouting of fractured sandstone[J]. Rock and Soil Mechanics,2023,44(Sup.1):12−26.

[20] 王刚,陈雪畅,陈昊,等. 煤裂隙粗糙度和开度对注水渗流影响的实验研究[J]. 煤田地质与勘探,2025,53(1):92−101.

WANG Gang,CHEN Xuechang,CHEN Hao,et al. Impacts of coal fracture roughness and aperture on the seepage of injected water:An experimental study[J]. Coal Geology & Exploration,2025,53(1):92−101.

[21] 朱寅斌,廖震,李长冬,等. 岩体粗糙单裂隙非达西流动各向异性特性[J]. 煤田地质与勘探,2025,53(2):130−146.

ZHU Yinbin,LIAO Zhen,LI Changdong,et al. Anisotropy in non–Darcy flow in individual rough–walled rock fractures[J]. Coal Geology & Exploration,2025,53(2):130−146.

[22] 杨志兵,周泽雄,薛松,等. 裂隙介质非饱和渗流多尺度机理与数值模型研究进展[J]. 武汉大学学报(工学版),2023,56(12):1472−1482.

YANG Zhibing,ZHOU Zexiong,XUE Song,et al. Review on research advances in multi–scale mechanisms and numerical models of unsaturated seepage in fractured media[J]. Engineering Journal of Wuhan University,2023,56(12):1472−1482.

[23] 赵晨希,张子新,王帅峰,等. 裂隙岩体中隧道开挖流固耦合模型及开挖诱发损伤分析[J]. 哈尔滨工业大学学报,2024,56(7):28−36.

ZHAO Chenxi,ZHANG Zixin,WANG Shuaifeng,et al. Hydro–mechanical coupling model for tunnel excavation in fractured rocks and analysis on excavation–induced damage[J]. Journal of Harbin Institute of Technology,2024,56(7):28−36.

[24] 李建伟,孙艳超,张传玖,等. 生态脆弱矿区覆岩采动裂隙渗流演化规律及自修复表征[J]. 煤田地质与勘探,2025,53(3):143−155.

LI Jianwei,SUN Yanchao,ZHANG Chuanjiu,et al. Seepage evolution patterns and self–sealing characterization of mining–induced overburden fractures in ecologically vulnerable mining areas[J]. Coal Geology & Exploration,2025,53(3):143−155.

[25] 田森,龚远恒,李永新,等. 寒区露天矿边坡裂隙岩体冻–动联合损伤劣化特性研究[J]. 中国安全科学学报,2025,35(4):85−93.

TIAN Sen,GONG Yuanheng,LI Yongxin,et al. Study on freezing–dynamic combined damage and deterioration characteristics of open–pit slope fractured rock mass in cold region[J]. China Safety Science Journal,2025,35(4):85−93.

[26] 张培森,王洪伟,洪荒,等. 渗流–采动应力耦合作用下深部砂岩力学及能量演化规律研究[J]. 岩土力学,2025,46(7):1−14.

ZHANG Peisen,WANG Hongwei,HONG Huang,et al. Study on mechanical properties and energy evolution law of deep sandstone under seepage–mining stress coupling[J]. Rock and Soil Mechanics,2025,46(7):1−14.

[27] 曾波,冯江荣,秦垦,等. 应力–渗流耦合下含裂隙砂岩力学特性研究[J]. 采矿与岩层控制工程学报,2025,7(3):033028.

ZENG Bo,FENG Jiangrong,QIN Ken,et al. Study on mechanical properties of fractured sandstone under stress–seepage coupling conditions[J]. Journal of Mining and Strata Control Engineering,2025,7(3):033028.

[28] 龚航里,王明洋,罗忆,等. 真三轴动静组合加载下非均质花岗岩损伤特性与能量演化机制研究[J]. 采矿与岩层控制工程学报,2025,7(3):033041.

GONG Hangli,WANG Mingyang,LUO Yi,et al. Damage characteristics and energy evolution mechanism of heterogeneous granite under true triaxial dynamic and static loading[J]. Journal of Mining and Strata Control Engineering,2025,7(3):033041.

[29] 彭岩岩,郦亦凡,余虎,等. 基于真三轴卸载试验不同倾角组合煤岩力学特性研究[J]. 采矿与岩层控制工程学报,2024,6(2):023037.

PENG Yanyan,LI Yifan,YU Hu,et al. Mechanical properties of coal and rock with different dip angles based on true triaxial unloading test[J]. Journal of Mining and Strata Control Engineering,2024,6(2):023037.

[30] 许增光,李煜婷,曹成. 岩土体介质非达西渗流特性研究进展[J]. 应用力学学报,2024,41(6):1211−1236.

XU Zengguang,LI Yuting,CAO Cheng. Research progress on non–Darcy seepage characteristics of soil and rock masses[J]. Chinese Journal of Applied Mechanics,2024,41(6):1211−1236.

[31] 王梦辉,涂福彬,童俊,等. 基于有限元的不同粗糙度裂隙等效渗透性预测[J]. 科学技术与工程,2022,22(24):10388−10394.

WANG Menghui,TU Fubin,TONG Jun,et al. Prediction of equivalent permeability of fractures with different roughness based on finite element method[J]. Science Technology and Engineering,2022,22(24):10388−10394.

[32] 李治豪,陈世江. 不同粗糙度裂隙渗流特性数值模拟研究[J]. 矿业安全与环保,2021,48(4):6−11.

LI Zhihao,CHEN Shijiang. Numerical simulation of seepage characteristics of fractures with different roughness[J]. Mining Safety & Environmental Protection,2021,48(4):6−11.

[33] 张静,徐世荣,赫中营. 考虑地下压力梯度的三维精细裂隙灌浆模拟[J]. 科学技术与工程,2024,24(35):15215−15223.

ZHANG Jing,XU Shirong,HE Zhongying. 3D fine fracture grouting simulation considering underground pressure[J]. Science Technology and Engineering,2024,24(35):15215−15223.

[34] 乔丽苹,庞利磊,王者超,等. 岩体交叉裂隙几何特征对溶质运移的影响[J]. 岩土工程学报,2025,47(6):1162−1170.

QIAO Liping,PANG Lilei,WANG Zhechao,et al. Influences of geometric characteristics of intersecting fractures in rock mass on solute transport[J]. Chinese Journal of Geotechnical Engineering,2025,47(6):1162−1170.

[35] 李卓徽,周宗青,高成路,等. 基于近场动力学与有限体积法耦合的裂隙岩体渗流模拟[J]. 同济大学学报(自然科学版),2022,50(9):1251−1263.

LI Zhuohui,ZHOU Zongqing,GAO Chenglu,et al. Seepage simulation method of fractured rock mass based on coupling of peridynamics and finite volume method[J]. Journal of Tongji University (Natural Science),2022,50(9):1251−1263.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.