Coal Geology & Exploration
Abstract
Background Burnt rocks represent special geobodies formed by the spontaneous combustion of coal seams. Their pore and fracture systems provide preferential spaces for groundwater occurrence and migration while also posing severe water hazard threats to the safe mining of adjacent coal seams. Methods To address this engineering challenge, this study systematically analyzed the void structures within burnt rocks using three-dimensional reconstruction technology. Through laboratory seepage and grouting experiments, this study revealed the seepage patterns and grouting-induced permeability mechanisms of typical burnt rock specimens. Results and Conclusions The burnt rock specimens contained highly developed pores and fractures, with the void structures showing complex and various spatial distributions. The interconnected large pores and fractures accounted for 56.72% of the total volume of voids, suggesting moderate connectivity in primary pore and fracture networks. Seepage experiments indicate that the burnt rocks exhibited a significant nonlinear relationship between the hydraulic gradient and flow velocity of seepage, with their seepage dynamics behavior consistent with the patterns characterized by the Forchheimer equation. The permeability varied significantly along different seepage directions, with differences in permeability coefficients of about 50%. Clay-cement grout exhibited high injectability within pore-fracture systems in the burnt rocks. The effective diffusion distance of the grout was predominately governed by the geometrical confinement effect of the pore-fracture throats. The proportion of pores and fractures filled by grout gradually decreased with an increase in the distance from the grouting port. The burnt rocks exhibited significant permeability reduction after grouting. The hydraulic gradient and flow velocity maintained a nonlinear relationship after grouting. Within 14 days after grouting, the permeability reduction rate increased with time, eventually stabilizing. These findings provide a theoretical basis and technical reference for water hazard prevention and control during coal seam mining in burnt rock areas.
Keywords
burnt rock, three-dimensional reconstruction, seepage characteristic, pore and fracture, grouting-induced permeability reduction
DOI
10.12363/issn.1001-1986.25.05.0382
Recommended Citation
QIAN Ziwei, TAN Chunzhi, SUN Qiang,
et al.
(2025)
"An experimental study on seepage characteristics and grouting-induced permeability reduction of burnt rocks,"
Coal Geology & Exploration: Vol. 53:
Iss.
7, Article 10.
DOI: 10.12363/issn.1001-1986.25.05.0382
Available at:
https://cge.researchcommons.org/journal/vol53/iss7/10
Reference
[1] 巩泊. 火烧岩煤层的物性特征[J]. 煤田地质与勘探,1987,15(6):52−55.
[2] 时志强,王美玲,陈彬. 中国北方烧变岩的分布、特征及研究意义[J]. 古地理学报,2021,23(6):1067−1081.
SHI Zhiqiang,WANG Meiling,CHEN Bin. Distribution,characteristics and significances of burnt rocks in northern China[J]. Journal of Palaeogeography (Chinese Edition),2021,23(6):1067−1081.
[3] 黄雷,刘池洋. 鄂尔多斯盆地北部地区延安组煤层自燃烧变产物及其特征[J]. 地质学报,2014,88(9):1753−1761.
HUANG Lei,LIU Chiyang. Products of combustion of the Yan’an Formation coal seam and their characteristics in the northeastern Ordos Basin[J]. Acta Geologica Sinica,2014,88(9):1753−1761.
[4] 韩冬梅,曹国亮,宋献方. 新疆大南湖煤田烧变岩水文地质参数研究[J]. 工程勘察,2015,43(11):32−38.
HAN Dongmei,CAO Guoliang,SONG Xianfang. Estimation of hydrogeological properties of a burned rock zone in the Dananhu coalfield,Xinjiang[J]. Geotechnical Investigation & Surveying,2015,43(11):32−38.
[5] 李旭. 准噶尔盆地火烧山地区平地泉组凝灰质烃源岩初步研究[D]. 西安:西北大学,2016.
LI Xu. A preliminary study on tuffaceous source rocks of Pingdiquan Formation in Huoshaoshan region,Junggar Basin[D]. Xi’an:Northwest University,2016.
[6] 令伟伟. 准噶尔盆地东部火烧山地区平地泉组方沸石特征及成因分析[D]. 西安:西北大学,2017.
LING Weiwei. Occurrence and origin analysis of analcimein Pingdiquan Formation,Huoshaoshan area,eastern Junggar Basin,Xinjiang,China[D]. Xi’an:Northwest University,2017.
[7] 李明星. 塔里木盆地北缘侏罗系烧变岩富水性精细探测[J]. 煤矿开采,2018,23(5):15−17.
LI Mingxing. Exquisite exploration of Jurassic burnt rock water abundance of northern part of Tarim Basin[J]. Coal Mining Technology,2018,23(5):15−17.
[8] 刘鹏. 煤火区烧变岩火山灰活性及浆液流变性能研究[D]. 徐州:中国矿业大学,2020.
LIU Peng. Study on the pozzolanic activity and rheological properties of the burnt rocks fluid in coal fire fields[D]. Xuzhou:China University of Mining and Technology,2020.
[9] 陈彬. 中国西北地区侏罗系中烧变岩的特征、形成时代及地质意义[D]. 成都:成都理工大学,2021.
CHEN Bin. Characteristics,ages and geological significance of the Jurassic combustion metamorphic rocks in northwestern China[D]. Chengdu:Chengdu University of Technology,2021.
[10] 陈凯,王文科,商跃瀚,等. 生态脆弱矿区烧变岩研究现状及展望[J]. 中国矿业,2020,29(3):171−176.
CHEN Kai,WANG Wenke,SHANG Yuehan,et al. Study status and outlook on burnt rock in the ecologically vulnerable coal–mining areas[J]. China Mining Magazine,2020,29(3):171−176.
[11] 张鹏飞. 团柏煤矿烧变岩突水的治理实践研究[J]. 能源与节能,2019(6):148−149.
ZHANG Pengfei. Research on treatment practice of burnt rock water inrush in Tuanbai Coal Mine[J]. Energy and Energy Conservation,2019(6):148−149.
[12] 孙德全,鲁孟胜,张兆民. 新疆大南湖北露天煤矿首采区Ⅲ火烧区地下水资源的数值模拟[J]. 煤田地质与勘探,2014,42(4):64−68.
SUN Dequan,LU Mengsheng,ZHANG Zhaomin. The numerical simulation of groundwater resources in burnt zone of the first mining area Ⅲ in Dananhu northern surface mine of Xinjiang[J]. Coal Geology & Exploration,2014,42(4):64−68.
[13] 王家乐. 张家峁井田2–2煤烧变岩地下水流场数值模拟[D]. 西安:西安科技大学,2017.
WANG Jiale. Numerical simulation of groundwater flow field of 2–2 coal burnt rock in Zhangjiamao coal field[D]. Xi’an:Xi’an University of Science and Technology,2017.
[14] 王海. 隐伏火烧区烧变岩含水层水害治理技术研究[J]. 煤田地质与勘探,2024,52(5):88−97.
WANG Hai. Technologies for water hazard prevention and control in burnt rock aquifers within concealed burnt areas[J]. Coal Geology & Exploration,2024,52(5):88−97.
[15] 范立民,蒋泽泉. 烧变岩地下水的形成及保水采煤新思路[J]. 煤炭工程,2006,38(4):40−41.
[16] 范立民,贺卫中,彭捷,等. 高强度煤炭开采对烧变岩泉的影响[J]. 煤炭科学技术,2017,45(7):127−131.
FAN Limin,HE Weizhong,PENG Jie,et al. Influence of high–intensity coal mining on burned rock spring[J]. Coal Science and Technology,2017,45(7):127−131.
[17] 王安良,蒋泽泉,院军刚. 神南矿区张家峁煤矿保水开采条件[J]. 地下水,2012,34(2):56−58.
[18] 高彬,薛小渊,杨帆,等. 张家峁井田火烧区水文地质特征[J]. 煤炭技术,2020,39(8):80−82.
GAO Bin,XUE Xiaoyuan,YANG Fan,et al. Hydrogeological characteristics of burnt rock area in Zhangjiamao Coal Mine[J]. Coal Technology,2020,39(8):80−82.
[19] 孙德全,张兆民,武凡,等. 干旱地区烧变岩地下水资源储量计算方法研究[J]. 中国煤炭地质,2014,26(9):40−42.
SUN Dequan,ZHANG Zhaomin,WU Fan,et al. Reserve estimation researches on burnt rock groundwater resources in arid areas[J]. Coal Geology of China,2014,26(9):40−42.
[20] 谷拴成,苏培莉,王建文,等. 烧变岩体特性及其注浆扩散行为研究[J]. 岩土力学,2009,30(增刊2):60−63.
GU Shuancheng,SU Peili,WANG Jianwen,et al. Study of peculiarity of burnt rock mass and its grouting spreading behavior[J]. Rock and Soil Mechanics,2009,30(Sup.2):60−63.
[21] 谷拴成,苏培莉,樊志斌,等. 注浆技术在煤矿加固防渗中的应用[J]. 煤炭工程,2009,41(4):60−62.
GU Shuancheng,SU Peili,FAN Zhibin,et al. Application of grouting technology to mine reinforcement and mine water leakage proof[J]. Coal Engineering,2009,41(4):60−62.
[22] 温成新,刘远军,何泽宏. 烧变岩钻孔与帷幕注浆技术在煤矿治水中的应用[J]. 能源技术与管理,2014,39(5):77−79.
[23] 张春锋,付钟,张德孝,等. 将军戈壁二号露天煤矿采场北帮烧变岩水治理方案[J]. 露天采矿技术,2016,31(5):4−7.
ZHANG Chunfeng,FU Zhong,ZHANG Dexiao,et al. Burnt rock water control scheme in Jiangjun Gobi No.2 open–pit coal mine stope north slope[J]. Opencast Mining Technology,2016,31(5):4−7.
[24] 姬中奎. 张家峁井田烧变岩与水库水力联系及帷幕截流技术研究[D]. 西安:西安科技大学,2018.
JI Zhongkui. Research on hydraulic connection and curtain closure technology of burnt rock in Zhangjiamao mine field and reservoir[D]. Xi’an:Xi’an University of Science and Technology,2018.
[25] 高亮,韩强,方刚. 柠条塔煤矿工作面顶板烧变岩水害防治技术应用[J]. 陕西煤炭,2024,43(8):112−118.
GAO Liang,HAN Qiang,FANG Gang. Roof burnt–rock water hazard prevention and control technology for working face of Ningtiaota Coal Mine[J]. Shaanxi Coal,2024,43(8):112−118.
[26] 蒋中明,肖喆臻,唐栋. 坝基岩体裂隙渗流效应数值模拟方法[J]. 水利学报,2020,51(10):1289−1298.
JIANG Zhongming,XIAO Zhezhen,TANG Dong. Numerical analysis method of fluid flow in fractured rock mass of dam foundation[J]. Journal of Hydraulic Engineering,2020,51(10):1289−1298.
[27] ELSANOOSE A,ABOBAKER E,KHAN F,et al. Estimating of non–Darcy flow coefficient in artificial porous media[J]. Energies,2022,15(3):1197.
[28] 许增光,李煜婷,曹成. 岩土体介质非达西渗流特性研究进展[J]. 应用力学学报,2024,41(6):1211−1236.
XU Zengguang,LI Yuting,CAO Cheng. Research progress on non–Darcy seepage characteristics of soil and rock masses[J]. Chinese Journal of Applied Mechanics,2024,41(6):1211−1236.
[29] 黄先伍,唐平,缪协兴,等. 破碎砂岩渗透特性与孔隙率关系的试验研究[J]. 岩土力学,2005,26(9):1385−1388.
HUANG Xianwu,TANG Ping,MIAO Xiexing,et al. Testing study on seepage properties of broken sandstone[J]. Rock and Soil Mechanics,2005,26(9):1385−1388.
[30] 许凯,雷学文,孟庆山,等. 非达西渗流惯性系数研究[J]. 岩石力学与工程学报,2012,31(1):164−170.
XU Kai,LEI Xuewen,MENG Qingshan,et al. Study of inertial coefficient of non–Darcy seepage flow[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(1):164−170.
[31] XING Kun,MA Lei,QIAN Jiazhong,et al. Experimental and numerical study on the Izbash equation coefficients in rough single fractures[J]. Physics of Fluids,2023,35(12):126603.
[32] 贺晓浪,蒲治国,段东伟. 黏土水泥浆水化固结微观特征研究[J]. 西安科技大学学报,2023,43(6):1168−1175.
HE Xiaolang,PU Zhiguo,DUAN Dongwei. Microscopic characteristics of hydration and consolidation of clay cement slurry[J]. Journal of Xi’an University of Science and Technology,2023,43(6):1168−1175.
[33] 马建国,蒲治国,丁湘,等. 西湾露天煤矿剥采边帮涌水超前治理技术研究与应用[J]. 中国煤炭,2023,49(2):37−43.
MA Jianguo,PU Zhiguo,DING Xiang,et al. Research and application of advance treatment technology for water inrush from stripping side slope in Xiwan open–pit coal mine[J]. China Coal,2023,49(2):37−43.
[34] 蒲治国,闫鑫,丁湘,等. 露天煤矿边帮烧变岩含水层黏土基帷幕墙注浆建造技术[J]. 煤炭工程,2022,54(12):67−72.
PU Zhiguo,YAN Xin,DING Xiang,et al. Grouting construction technology of clay–based curtain wall in aquifer of slope burnt rock in open–pit coal mine[J]. Coal Engineering,2022,54(12):67−72.
[35] RONG Guan,YANG Jie,CHENG Long,et al. A Forchheimer equation–based flow model for fluid flow through rock fracture during shear[J]. Rock Mechanics and Rock Engineering,2018,51(9):2777−2790.
[36] YIN Qian,MA Guowei,JING Hongwen,et al. Hydraulic properties of 3D rough–walled fractures during shearing:An experimental study[J]. Journal of Hydrology,2017,555:169−184.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons