•  
  •  
 

Coal Geology & Exploration

Abstract

Background Noble gases emerge as significant tools for tracing the sources and evolutionary processes of geofluids due to their chemical inertness and different isotopic compositions across varying reservoirs. Helium serves as a noble gas tracer and a scarce resource, and its enrichment mechanisms and exploration potential have attracted wide attention.Methods Based on a summary of the geochemical data of typical gas reservoirs, volcanic gases, and surface hot springs at home and abroad, this study analyzed the interfering factors and end-member value screening in the source apportionment of noble gases. Furthermore, it summarized the applications of noble gas isotopes in multiple scenarios such as constructing reservoir models and reconstructing fluid distribution. Accordingly, the helium accumulation theory was generalized based on the generation potential of helium, as well as its migration and accumulation mechanisms.Advances and Prospects By combining case studies, this study proposed three helium enrichment types: tectonic activity enhancing helium flux type (e.g., the Lhasa Block in the Qinghai-Tibet Plateau), the self-sealing-based helium accumulation in deeply buried high-pressure shale (e.g., the Cambrian and Silurian shale gas reservoirs in the Sichuan Basin), and helium accumulation based on the coupling of alkane gases and the precipitation of helium dissolved in water (e.g., the Hetianhe gas field in the Tarim Basin). The crust-derived helium flux in the Lhasa block shows a theoretical value 221 to 78 056 times the global average, with numerical simulations yielding 6 392 to 9 284 times, establishing this block as an ideal region for helium accumulation. Since the high-pressure nanopore system can significantly inhibit helium diffusion and an earlier hydrocarbon generation peak corresponds to a prolonged sustained helium enrichment stage, this study posits that the deeply buried ancient shale gas reservoirs possess ideal conditions for helium accumulation. Additionally, when the alkane gases accumulating in the late stage migrated toward traps, they can extract helium from widespread ancient formation water, leading to helium enrichment. Therefore, it is considered that these reservoirs also represent an ideal helium accumulation type.

Keywords

noble gase, geofluid tracing, noble gase fractionation, helium enrichment

DOI

10.12363/issn.1001-1986.24.12.0821

Reference

[1] 陶小晚,李建忠,赵力彬,等. 我国氦气资源现状及首个特大型富氦储量的发现:和田河气田[J]. 地球科学,2019,44(3):1024−1041.

TAO Xiaowan,LI Jianzhong,ZHAO Libin,et al. Helium resources and discovery of first supergiant helium reserve in China:Hetianhe gas field[J]. Earth Science,2019,44(3):1024−1041.

[2] 刘凯旋,陈践发,付娆,等. 威远气田富氦天然气分布规律及控制因素探讨[J]. 中国石油大学学报(自然科学版),2022,46(4):12−21.

LIU Kaixuan,CHEN Jianfa,FU Rao,et al. Discussion on distribution law and controlling factors of helium–rich natural gas in Weiyuan gas field[J]. Journal of China University of Petroleum (Edition of Natural Science),2022,46(4):12−21.

[3] PENG Weilong,LIU Quanyou,ZHANG Ying,et al. The first extra–large helium–rich gas field identified in a tight sandstone of the Dongsheng gas field,Ordos Basin,China[J]. Science China:Earth Sciences,2022,65(5):874−881.

[4] GILFILLAN S M,BALLENTINE C J,HOLLAND G,et al. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces,USA[J]. Geochimica et Cosmochimica Acta,2008,72(4):1174−1198.

[5] BROWN A. Origin of helium and nitrogen in the Panhandle–Hugoton field of Texas,Oklahoma,and Kansas,United States[J]. AAPG Bulletin,2019,103(2):369−403.

[6] HALFORD D T,KAROLYTĖ R,BARRY P H,et al. High helium reservoirs in the four corners area of the Colorado Plateau,USA[J]. Chemical Geology,2022,596:120790.

[7] OZIMA M,PODOSEK F A. Noble gas geochemistry[M]. Cambridge:Cambridge University Press,2001.

[8] GRAHAM D W. Noble gas isotope geochemistry of mid–ocean ridge and ocean island basalts:Characterization of mantle source reservoirs[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):247−317.

[9] BALLENTINE C J,BURGESS R,MARTY B. Tracing fluid origin,transport and interaction in the crust[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):539−614.

[10] YATSEVICH I,HONDA M. Production of nucleogenic neon in the Earth from natural radioactive decay[J]. Journal of Geophysical Research:Solid Earth,1997,102(B5):10291−10298.

[11] BALLENTINE C J,BURNARD P G. Production,release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):481−538.

[12] MARK D F,STUART F M,DE PODESTA M. New high–precision measurements of the isotopic composition of atmospheric argon[J]. Geochimica et Cosmochimica Acta,2011,75(23):7494−7501.

[13] LI Yan. Tracing fluid dynamics with noble gas and stable isotope systematics:Examples from Krafla,Iceland and Sichuan Basin,China[D]. Lancaster:Lancaster University,2018.

[14] LYU Jiahao,LIU Quanyou,LI Pengpeng,et al. Distribution and enrichment mechanism of helium in the Hetianhe gas field,Tarim Basin,Northwest China[J]. Marine and Petroleum Geology,2025,173:107285.

[15] LIU Quanyou,WU Xiaoqi,JIA Huichong,et al. Geochemical characteristics of helium in natural gas from the Daniudi gas field,Ordos Basin,Central China[J]. Frontiers in Earth Science,2022,10:823308.

[16] PODOSEK F A,BERNATOWICZ T J,KRAMER F E. Adsorption of xenon and krypton on shales[J]. Geochimica et Cosmochimica Acta,1981,45(12):2401−2415.

[17] KIPFER R,AESCHBACH–HERTIG W,PEETERS F,et al. Noble gases in lakes and ground waters[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):615−700.

[18] CHEN Biying. Evolution of coalbed methane:Insights from stable and noble gas isotopes[D]. Glasgow:University of Glasgow,2021.

[19] RUDNICK R L,FOUNTAIN D M. Nature and composition of the continental crust:A lower crustal perspective[J]. Reviews of Geophysics,1995,33(3):267−309.

[20] TAKAHATA N,SANO Y. Helium flux from a sedimentary basin[J]. Applied Radiation and Isotopes,2000,52(4):985−992.

[21] ZHOU Zheng,BALLENTINE C J,KIPFER R,et al. Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin,USA[J]. Geochimica et Cosmochimica Acta,2005,69(23):5413−5428.

[22] CASTRO M C. Helium sources in passive margin aquifers:New evidence for a significant mantle 3He source in aquifers with unexpectedly low in situ 3He/4He production[J]. Earth and Planetary Science Letters,2004,222(3/4):897−913.

[23] CASTRO M C,JAMBON A,DE MARSILY G,et al. Noble gases as natural tracers of water circulation in the Paris Basin:1. Measurements and discussion of their origin and mechanisms of vertical transport in the basin[J]. Water Resources Research,1998,34(10):2443−2466.

[24] CASTRO M C,GOBLET P,LEDOUX E,et al. Noble gases as natural tracers of water circulation in the Paris Basin:2. Calibration of a groundwater flow model using noble gas isotope data[J]. Water Resources Research,1998,34(10):2467−2483.

[25] PATRIARCHE D,CASTRO M C,GOBLET P. Large–scale hydraulic conductivities inferred from three–dimensional groundwater flow and 4He transport modeling in the Carrizo aquifer,Texas[J]. Journal of Geophysical Research:Solid Earth,2004,109(B11):B11202.

[26] STUTE M,SCHLOSSER P,CLARK J F,et al. Paleotemperatures in the Southwestern United States derived from noble gases in ground water[J]. Science,1992,256(5059):1000−1003.

[27] STUTE M,SONNTAG C,DEÁK J,et al. Helium in deep circulating groundwater in the Great Hungarian Plain:Flow dynamics and crustal and mantle helium fluxes[J]. Geochimica et Cosmochimica Acta,1992,56(5):2051−2067.

[28] HOU Zengqian,WANG Qingfei,ZHANG Haijiang,et al. Lithosphere architecture characterized by crust–mantle decoupling controls the formation of orogenic gold deposits[J]. National Science Review,2023,10(3):nwac257.

[29] 李思奥,包亚文,梁慨慷,等. 东昆仑古生代镁铁质岩浆镍钴成矿条件:希望沟地区超镁铁质岩C–He–Ne–Ar同位素制约[J]. 岩石学报,2024,40(7):2153−2168.

LI Siao,BAO Yawen,LIANG Kaikang,et al. Mineralization conditions of Ni–Co in Paleozoic mafic magma in the east Kunlun orogenic belt:Constraints from C–He–Ne–Ar isotopic compositions of ultramafic rocks in the Xiwanggou region[J]. Acta Petrologica Sinica,2024,40(7):2153−2168.

[30] CHAI Mingchun,LI Jianwei,WU Yafei,et al. Paleozoic orogenic gold mineralization from metamorphism of volcanic sequences in the north Qinling terrane (Central China):Insights from the Yindongpo gold deposit in the Tongbai area[J]. Mineralium Deposita,2024,59(7):1531−1552.

[31] WANG Xiaofeng,LIU Quanyou,LIU Wenhui,et al. Helium accumulation in natural gas systems in Chinese sedimentary basins[J]. Marine and Petroleum Geology,2023,150:106155.

[32] MÉJEAN P,PINTI D L,KAGOSHIMA T,et al. Mantle helium in southern Quebec groundwater:A possible fossil record of the New England hotspot[J]. Earth and Planetary Science Letters,2020,545:116352.

[33] ROULLEAU E,VINET N,SANO Y,et al. Effect of the volcanic front migration on helium,nitrogen,argon,and carbon geochemistry of hydrothermal/magmatic fluids from Hokkaido volcanoes,Japan[J]. Chemical Geology,2015,414:42−58.

[34] TARDANI D,REICH M,ROULLEAU E,et al. Exploring the structural controls on helium,nitrogen and carbon isotope signatures in hydrothermal fluids along an intra–arc fault system[J]. Geochimica et Cosmochimica Acta,2016,184:193−211.

[35] WANG Xiaobo,HOU Lianhua,LI Jian,et al. Geochemical characteristics and gas source contributions of noble gases of the Sulige large tight gas field of Upper Paleozoic in Ordos Basin,China[J]. Frontiers in Earth Science,2022,10:889112.

[36] ZHANG Wen,LI Yuhong,ZHAO Fenghua,et al. Using noble gases to trace groundwater evolution and assess helium accumulation in Weihe Basin,Central China[J]. Geochimica et Cosmochimica Acta,2019,251:229−246.

[37] BARRY P H,LAWSON M,MEURER W P,et al. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field[J]. Geochimica et Cosmochimica Acta,2016,194:291−309.

[38] LIU Quanyou,DAI Jinxing,JIN Zhijun,et al. Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen gas field,Songliao Basin,China,suggesting abiogenic alkanes?[J]. Journal of Asian Earth Sciences,2016,115:285−297.

[39] XU Sheng,NAKAI S,WAKITA H,et al. Mantle–derived noble gases in natural gases from Songliao Basin,China[J]. Geochimica et Cosmochimica Acta,1995,59(22):4675−4683.

[40] CARDOSO C D,RUSSIER E,MARTY B,et al. Helium isotope evidence for cryptic magmatism along Central France[J]. Chemical Geology,2023,634:121588.

[41] HONDA M,MCDOUGALL I,PATTERSON D B,et al. Possible solar noble–gas component in Hawaiian basalts[J]. Nature,1991,349(6305):149−151.

[42] TRIELOFF M,KUNZ J,ALLÈGRE C J. Noble gas systematics of the Réunion mantle plume source and the origin of primordial noble gases in Earth’s mantle[J]. Earth and Planetary Science Letters,2002,200(3/4):297−313.

[43] LIPPMANN–PIPKE J,LOLLAR B S,NIEDERMANN S,et al. Neon identifies two billion year old fluid component in Kaapvaal Craton[J]. Chemical Geology,2011,283(3/4):287−296.

[44] KENNEDY B M,HIYAGON H,REYNOLDS J H. Crustal neon:A striking uniformity[J]. Earth and Planetary Science Letters,1990,98(3/4):277−286.

[45] BUIKIN A,TRIELOFF M,HOPP J,et al. Noble gas isotopes suggest deep mantle plume source of late Cenozoic mafic alkaline volcanism in Europe[J]. Earth and Planetary Science Letters,2005,232(1/2):209.

[46] SANO Y,MARTY B. Origin of carbon in fumarolic gas from island arcs[J]. Chemical Geology,1995,119(1/2/3/4):265−274.

[47] XU Sheng,ZHENG Guodong,XU Yongchang. Helium,argon and carbon isotopic compositions of spring gases in the Hainan Island,China[J]. Acta Geologica Sinica (English Edition),2012,86(6):1515−1523.

[48] GILFILLAN S M V,LOLLAR B S,HOLLAND G,et al. Solubility trapping in formation water as dominant CO2 sink in natural gas fields[J]. Nature,2009,458(7238):614−618.

[49] BYRNE D J,BARRY P H,LAWSON M,et al. The use of noble gas isotopes to constrain subsurface fluid flow and hydrocarbon migration in the east Texas Basin[J]. Geochimica et Cosmochimica Acta,2020,268:186−208.

[50] 吴小奇,戴金星,廖凤蓉,等. 四川盆地东部天然气中CO2的成因和来源[J]. 中国科学:地球科学,2013,43(4):503−512.

WU Xiaoqi,DAI Jinxing,LIAO Fengrong,et al. Origin and source of CO2 in natural gas from the eastern Sichuan Basin[J]. Science China:Earth Sciences,2013,43(4):503−512.

[51] DAI Jinxing,NI Yunyan,QIN Shengfei,et al. Geochemical characteristics of He and CO2 from the Ordos (cratonic) and Bohaibay (rift) Basins in China[J]. Chemical Geology,2017,469:192−213.

[52] BINI G,CHIODINI G,CALIRO S,et al. Nitrogen,helium,and argon reveal the magmatic signature of fumarole gases and episodes of outgassing from upper–crustal magma reservoirs:The case of the Nisyros caldera (Aegean Arc,Greece)[J]. Geochimica et Cosmochimica Acta,2022,335:68−84.

[53] TOLSTIKHIN I,LEHMANN B E,LOOSLI H H,et al. Helium and argon isotopes in rocks,minerals,and related ground waters:A case study in northern Switzerland[J]. Geochimica et Cosmochimica Acta,1996,60(9):1497−1514.

[54] LI Yan,QIN Shengfei,WANG Yunpeng,et al. Tracing interaction between hydrocarbon and groundwater systems with isotope signatures preserved in the Anyue gas field,central Sichuan Basin,China[J]. Geochimica et Cosmochimica Acta,2020,274:261−285.

[55] MTILI K M,BYRNE D J,TYNE R L,et al. The origin of high helium concentrations in the gas fields of southwestern Tanzania[J]. Chemical Geology,2021,585:120542.

[56] SMITH S P,KENNEDY B M. The solubility of noble gases in water and in NaCl brine[J]. Geochimica et Cosmochimica Acta,1983,47(3):503−515.

[57] CROVETTO R,FERNÁNDEZ–PRINI R,JAPAS M L. Solubilities of inert gases and methane in H2O and in D2O in the temperature range of 300 to 600 K[J]. The Journal of Chemical Physics,1982,76(2):1077−1086.

[58] KHARAKA Y K,SPECHT D J. The solubility of noble gases in crude oil at 25–100 ℃[J]. Applied Geochemistry,1988,3(2):137−144.

[59] 陈祥瑞,王云鹏,何志华,等. CH4、CO2与稀有气体溶解度的估算模型及其地质应用[J]. 天然气地球科学,2023,34(4):707−718.

CHEN Xiangrui,WANG Yunpeng,HE Zhihua,et al. Solubility models of CH4,CO2 and noble gases and their geological applications[J]. Natural Gas Geoscience,2023,34(4):707−718.

[60] LIU Rui,WEN Tao,AMALBERTI J,et al. The dichotomy in noble gas signatures linked to tectonic deformation in Wufeng–Longmaxi Shale,Sichuan Basin[J]. Chemical Geology,2021,581:120412.

[61] BARRY P H,KULONGOSKI J T,LANDON M K,et al. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases[J]. Earth and Planetary Science Letters,2018,496:57−67.

[62] CHEN Biying,STUART F M,XU Sheng,et al. Evolution of coal–bed methane in southeast Qinshui Basin,China:Insights from stable and noble gas isotopes[J]. Chemical Geology,2019,529:119298.

[63] BYRNE D J,BROADLEY M W,HALLDÓRSSON S A,et al. The use of noble gas isotopes to trace subsurface boiling temperatures in Icelandic geothermal systems[J]. Earth and Planetary Science Letters,2021,560:116805.

[64] LIU Wenhui,SUN Mingliang,XU Yongchang. An approach to noble–gas isotopic compositions in natural gases and gas–source tracing in the Ordos Basin,China[J]. Chinese Science Bulletin,2002,47(6):490−494.

[65] ZHANG Wen,LI Yuhong,ZHAO Fenghua,et al. Quantifying the helium and hydrocarbon accumulation processes using noble gases in the north Qaidam Basin,China[J]. Chemical Geology,2019,525:368−379.

[66] ZHONG Wanxu. Using noble gases to trace subsurface fluid dynamics and helium accumulation in the Sichuan Basin,the Ordos Basin and the Qinshui Basin,China[D]. Manchester:The University of Manchester,2022.

[67] LI Pengpeng,LIU Quanyou,ZHU Dongya,et al. Distributions and accumulation mechanisms of helium in petroliferous basins[J]. Science China:Earth Sciences,2024,67(10):3143−3168.

[68] BROWN A A. PSFormation of high helium gases:A guide for explorationists[C]//AAPG Convention. New Orleans:AAPG,2010:80115.

[69] 蒙炳坤,李靖,周世新,等. 黔南坳陷震旦系–寒武系页岩解析气中氦气成因及来源[J]. 天然气地球科学,2023,34(4):647−655.

MENG Bingkun,LI Jing,ZHOU Shixin,et al. Origin and source of helium in the resolved gas of Sinian–Cambrian shale in the Qiannan Depression[J]. Natural Gas Geoscience,2023,34(4):647−655.

[70] CRAIG H,LUPTON J E. Primordial neon,helium,and hydrogen in oceanic basalts[J]. Earth and Planetary Science Letters,1976,31(3):369−385.

[71] ZHOU Zheng,BALLENTINE C J. 4He dating of groundwater associated with hydrocarbon reservoirs[J]. Chemical Geology,2006,226(3/4):309−327.

[72] 朱光有,胡剑风,陈永权,等. 塔里木盆地轮探1井下寒武统玉尔吐斯组烃源岩地球化学特征与形成环境[J]. 地质学报,2022,96(6):2116−2130.

ZHU Guangyou,HU Jianfeng,CHEN Yongquan,et al. Geochemical characteristics and formation environment of source rock of the Lower Cambrian Yuertusi Formation in well Luntan 1 in Tarim Basin[J]. Acta Geologica Sinica,2022,96(6):2116−2130.

[73] 王慧玲,姚泾利,石小虎,等. 鄂尔多斯盆地陇东地区太原组铝土岩系地球化学特征及其地质意义[J]. 天然气地球科学,2024,35(8):1502−1517.

WANG Huiling,YAO Jingli,SHI Xiaohu,et al. Geochemical characteristics and geological significance of the Taiyuan Formation bauxite series in the Longdong area of the Ordos Basin[J]. Natural Gas Geoscience,2024,35(8):1502−1517.

[74] 何衍鑫,田伟,王磊,等. 基于自然伽马能谱测井的氦气资源评价方法:以塔里木盆地古城地区为例[J]. 天然气地球科学,2023,34(4):719−733.

HE Yanxin,TIAN Wei,WANG Lei,et al. Quantifying the helium generation based on natural gamma–ray spectrometry data:Gucheng area,Tarim Basin[J]. Natural Gas Geoscience,2023,34(4):719−733.

[75] 张文. 关中和柴北缘地区战略性氦气资源成藏机理研究[D]. 北京:中国矿业大学(北京),2019.

ZHANG Wen. Accumulation mechanism of helium,a strategic resources,in Guanzhong and north Qaidam Basin[D]. Beijing:China University of Mining & Technology (Beijing),2019.

[76] FECHTIG H,KALBITZER S. The diffusion of argon in potassium–bearing solids[M]//Potassium argon dating. Berlin:Springer Berlin Heidelberg,1966:68–107.

[77] LAGERWALL T,ZIMEN K E. The kinetics of rare–gas diffusion in solids:Tables and graphs for the evaluation of post–activation diffusion experiments[M]. Berlin:Berlin–Wannsee,1963.

[78] DODSON M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology,1973,40(3):259−274.

[79] 李平,马向贤,张明震,等. 矿物中氦的扩散过程及控制因素研究进展[J]. 天然气地球科学,2023,34(4):697−706.

LI Ping,MA Xiangxian,ZHANG Mingzhen,et al. Research progress on diffusion process and controlling factors of helium in minerals[J]. Natural Gas Geoscience,2023,34(4):697−706.

[80] 秦胜飞,周国晓,李济远,等. 氦气与氮气富集耦合作用及其重要意义[J]. 天然气地球科学,2023,34(11):1981−1992.

QIN Shengfei,ZHOU Guoxiao,LI Jiyuan,et al. The coupling effect of helium and nitrogen enrichment and its significance[J]. Natural Gas Geoscience,2023,34(11):1981−1992.

[81] LIU Wei,ZHANG Maoliang,CHEN Biying,et al. Hydrothermal He and CO2 degassing from a Y–shaped active fault system in eastern Tibetan Plateau with implications for seismogenic processes[J]. Journal of Hydrology,2023,620:129482.

[82] DANABALAN D,GLUYAS J G,MACPHERSON C G,et al. The principles of helium exploration[J]. Petroleum Geoscience,2022,28(2):petgeo2021−petgeo2029.

[83] 刘树根,孙玮,李智武,等. 四川盆地晚白垩世以来的构造隆升作用与天然气成藏[J]. 天然气地球科学,2008,19(3):293−300.

LIU Shugen,SUN Wei,LI Zhiwu,et al. Tectonic uplifting and gas pool formation since Late Cretaceous epoch,Sichuan Basin[J]. Natural Gas Geoscience,2008,19(3):293−300.

[84] 戴金星. 威远气田成藏期及气源[J]. 石油实验地质,2003,25(5):473−480.

DAI Jinxing. Pool–forming periods and gas sources of Weiyuan gasfield[J]. Petroleum Geology & Experiment,2003,25(5):473−480.

[85] WANG Xiaofeng,LIU Wenhui,LI Xiaobin,et al. Radiogenic helium concentration and isotope variations in crustal gas pools from Sichuan Basin,China[J]. Applied Geochemistry,2020,117:104586.

[86] HALFORD D T,KAROLYTĖ R,ANDREASON M W,et al. Probabilistic determination of the role of faults and intrusions in helium–rich gas fields formation[J]. Geochemistry,Geophysics,Geosystems,2024,25(6):e2024GC011522.

[87] 李玉宏,张文,王利,等. 亨利定律与壳源氦气弱源成藏:以渭河盆地为例[J]. 天然气地球科学,2017,28(4):495−501.

LI Yuhong,ZHANG Wen,WANG Li,et al. Henry’s Law and accumulation of crust–derived helium:A case from Weihe Basin,China[J]. Natural Gas Geoscience,2017,28(4):495−501.

[88] 陶士振,杨怡青,陈悦,等. 氦气资源形成地质条件、成因机理与富集规律[J]. 石油勘探与开发,2024,51(2):436−452.

TAO Shizhen,YANG Yiqing,CHEN Yue,et al. Geological conditions,genetic mechanisms and accumulation patterns of helium resources[J]. Petroleum Exploration and Development,2024,51(2):436−452.

[89] 秦胜飞,陶刚,罗鑫,等. 氦气富集与天然气成藏差异、勘探误区[J]. 天然气工业,2023,43(12):138−151.

QIN Shengfei,TAO Gang,LUO Xin,et al. Difference between helium enrichment and natural gas accumulation and misunderstandings in helium exploration[J]. Natural Gas Industry,2023,43(12):138−151.

[90] 秦胜飞,窦立荣,陶刚,等. 氦气富集理论及富氦资源勘探思路[J]. 石油勘探与开发,2024,51(5):1160−1174.

QIN Shengfei,DOU Lirong,TAO Gang,et al. Helium enrichment theory and exploration ideas for helium–rich gas reservoirs[J]. Petroleum Exploration and Development,2024,51(5):1160−1174.

[91] 张宝收,张本健,汪华,等. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦–富氦气田[J]. 石油与天然气地质,2024,45(1):185−199.

ZHANG Baoshou,ZHANG Benjian,WANG Hua,et al. The Jinqiu gas field in the Sichuan Basin:A typical helium–bearing to helium–rich gas field with the Mesozoic sedimentary rocks as helium source rocks[J]. Oil & Gas Geology,2024,45(1):185−199.

[92] HAO Yinlei,KUANG Xingxing,FENG Yuqing,et al. Discovery and genesis of helium–rich geothermal fluids along the India–Asia continental convergent margin[J]. Geochimica et Cosmochimica Acta,2023,360:175−191.

[93] LOWENSTERN J B,EVANS W C,BERGFELD D,et al. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone[J]. Nature,2014,506(7488):355−358.

[94] KLEMPERER S L,ZHAO Ping,WHYTE C J,et al. Limited underthrusting of India below Tibet:3He/4He analysis of thermal springs locates the mantle suture in continental collision[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(12):e2113877119.

[95] QU Bin,AHO K S,LI Chaoliu,et al. Greenhouse gases emissions in rivers of the Tibetan Plateau[J]. Scientific Reports,2017,7:16573.

[96] TORGERSEN T. Continental degassing flux of 4He and its variability[J]. Geochemistry,Geophysics,Geosystems,2010,11(6):Q06002.

[97] JÄHNE B,HEINZ G,DIETRICH W. Measurement of the diffusion coefficients of sparingly soluble gases in water[J]. Journal of Geophysical Research:Oceans,1987,92(C10):10767−10776.

[98] SATHAYE K J,SMYE A J,JORDAN J S,et al. Noble gases preserve history of retentive continental crust in the Bravo Dome natural CO2 field,New Mexico[J]. Earth and Planetary Science Letters,2016,443:32−40.

[99] 胡道功,吴珍汉,江万,等. 西藏念青唐古拉岩群SHRIMP锆石U–Pb年龄和Nd同位素研究[J]. 中国科学(D辑:地球科学),2005,35(1):29−37.

[100] 陈新军,陈刚,边瑞康,等. 四川盆地涪陵页岩气田氦气资源潜力与成因机理[J]. 天然气地球科学,2023,34(3):469−476.

CHEN Xinjun,CHEN Gang,BIAN Ruikang,et al. The helium resource potential and genesis mechanism in Fuling shale gas field,Sichuan Basin[J]. Natural Gas Geoscience,2023,34(3):469−476.

[101] SONG Dandan,GUAN Ping,ZHANG Chi,et al. Molecular dynamics simulations of helium transport through inorganic mineral nanopores[J]. Science China:Earth Sciences,2025,68(1):237−252.

[102] WANG Xiaofeng,LIU Wenhui,LI Xiaobin,et al. Application of noble gas geochemistry to the quantitative study of the accumulation and expulsion of lower Paleozoic shale gas in Southern China[J]. Applied Geochemistry,2022,146:105446.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.