Coal Geology & Exploration
Abstract
Objective and Methods Investigations on the geochemical nature of geothermal water are vital to the comprehension of the origin of helium-rich fluids in shallow basins. To address this issue, this paper reports the results of the chemical analysis, H-O isotopes and 14C ages from geothermal water and soluble gas components from the well BY-1 in Lanzhou Basin, northeastern margin of Qinghai Tibet Plateau. Chemical analysis of geothermal water samples reveals that the chemical type of geothermal water is NaCl. The show δD value of –78‰, high δ18O value (–8.7‰), low 3H value (<0.4TU), and old 14C age (20.50±0.92ka). The geothermal water has undergone evaporation-concentration and water-rock interactions, which originated from ancient atmospheric precipitation. Component analysis from 10 water-dissolved gas samples reveals an average helium concentration of 0.44%. The concentration of He meets the standard for helium-rich gas fields. Compositions of the dissolved gas and the geochemical nature of the groundwater jointly suggest that the associated helium in the geothermal water from this well is a product of the radioactive decay of Th-U elements in the basement rocks of the basin. Comprehensive analysis indicates that the upward migration and accumulation of ancient helium-bearing water from the basement into shallow geothermal reservoirs along fault zones under the background of tectonic uplift is the key process for the enrichment of associated helium in geothermal water in the Lanzhou Basin.
Keywords
helium, geothermal water, geochemistry, Neogene Yangshao Formation, Lanzhou Basin, northeastern margin of Qinghai Tibet Plateau
DOI
10.12363/issn.1001-1986.25.01.0010
Recommended Citation
TANG Jianzhou, WANG Shuangming, ZHANG Zhicheng,
et al.
(2025)
"Geochemical nature of the geothermal water from Lanzhou Basin: Implications for the genesis of shallow helium-bearing fluids,"
Coal Geology & Exploration: Vol. 53:
Iss.
6, Article 4.
DOI: 10.12363/issn.1001-1986.25.01.0010
Available at:
https://cge.researchcommons.org/journal/vol53/iss6/4
Reference
[1] 陈践发,刘凯旋,董勍伟,等. 天然气中氦资源研究现状及我国氦资源前景[J]. 天然气地球科学,2021,32(10):1436−1449.
CHEN Jianfa,LIU Kaixuan,DONG Qingwei,et al. Research status of helium resources in natural gas and prospects of helium resources in China[J]. Natural Gas Geoscience,2021,32(10):1436−1449.
[2] 秦胜飞,周国晓,李济远,等. 氦气与氮气富集耦合作用及其重要意义[J]. 天然气地球科学,2023,34(11):1981−1992.
QIN Shengfei,ZHOU Guoxiao,LI Jiyuan,et al. The coupling effect of helium and nitrogen enrichment and its significance[J]. Natural Gas Geoscience,2023,34(11):1981−1992.
[3] 李玉宏,周俊林,韩伟,等. 公益性氦气资源调查研究进展[J]. 中国地质调查,2023,10(4):1−8.
LI Yuhong,ZHOU Junlin,HAN Wei,et al. Progress of commonweal helium resource survey and research[J]. Geological Survey of China,2023,10(4):1−8.
[4] 李剑,王晓波,徐朱松,等. 中国氦气资源成藏规律与开发前景[J]. 天然气地球科学,2024,35(5):851−868.
LI Jian,WANG Xiaobo,XU Zhusong,et al. Helium resources accumulation regulations and their development prospects in China[J]. Natural Gas Geoscience,2024,35(5):851−868.
[5] 惠洁,康锐,赵伟波,等. 鄂尔多斯盆地氦气特征及生成潜力[J]. 天然气地球科学,2024,35(9):1688−1698.
HUI Jie,KANG Rui,ZHAO Weibo,et al. Helium characteristics and potential in the Ordos Basin[J]. Natural Gas Geoscience,2024,35(9):1688−1698.
[6] 李朋朋,刘全有,朱东亚,等. 含油气盆地氦气分布特征与成藏机制[J]. 中国科学:地球科学,2024,54(10):3195−3218.
LI Pengpeng,LIU Quanyou,ZHU Dongya,et al. Distributions and accumulation mechanisms of helium in petroliferous basins[J]. Science China:Earth Sciences,2024,54(10):3195−3218.
[7] 章双龙,肖富强,邹勇军. 江西赣南地区地热伴生氦气资源的发现及异常成因探讨[J]. 天然气地球科学,2024,35(3):495−506.
ZHANG Shuanglong,XIAO Fuqiang,ZOU Yongjun. Discovery of geothermal associated helium resources and exploration of their anomalous origins in the southern Jiangxi region[J]. Natural Gas Geoscience,2024,35(3):495−506.
[8] 陈燕燕,陶士振,杨秀春,等. 页岩气和煤层气中氦气的地球化学特征和富集规律[J]. 天然气地球科学,2023,34(4):684−696.
CHEN Yanyan,TAO Shizhen,YANG Xiuchun,et al. The geochemical characteristics and enrichment of helium in shale gas and coalbed methane[J]. Natural Gas Geoscience,2023,34(4):684−696.
[9] 王晓锋,刘全有,刘文汇,等. 中国东部含油气盆地幔源氦气资源富集成藏机理[J]. 中国科学:地球科学,2022,52(12):2441−2453.
WANG Xiaofeng,LIU Quanyou,LIU Wenhui,et al. Accumulation mechanism of mantle–derived helium resources in petroliferous basins,Eastern China[J]. Science China:Earth Sciences,2022,52(12):2441−2453.
[10] 秦胜飞,窦立荣,陶刚,等. 天然气藏氦气富集理论及富氦资源勘探思路[J]. 石油勘探与开发,2024,51(5):1−15.
QIN Shengfei,DOU Lirong,TAO Gang,et al. Helium enrichment theory and exploration ideas for helium–rich gas reservoirs[J]. Petroleum Exploration and Development,2024,51(5):1−15.
[11] 秦胜飞,李济远,梁传国,等. 中国中西部富氦气藏氦气富集机理:古老地层水脱氦富集[J]. 天然气地球科学,2022,33(8):1203−1217.
QIN Shengfei,LI Jiyuan,LIANG Chuanguo,et al. Helium enrichment mechanism of helium rich gas reservoirs in Central and Western China:Degassing and accumulation from old formation water[J]. Natural Gas Geoscience,2022,33(8):1203−1217.
[12] ZHANG Wen,LI Yuhong,ZHAO Fenghua,et al. Quantifying the helium and hydrocarbon accumulation processes using noble gases in the north Qaidam Basin,China[J]. Chemical Geology,2019,525:368−379.
[13] 梅小元. 安徽阜阳盆地发现富氦级别的地热水伴生氦气资源[J]. 资源环境与工程,2024,38(6):762−765.
MEI Xiaoyuan. Rich helium gas resources associated with geothermal water in Fuyang Basin,Anhui Province[J]. Resources Environment & Engineering,2024,38(6):762−765.
[14] 韩元红,罗厚勇,薛宇泽,等. 渭河盆地地热水伴生天然气成因及氦气富集机理[J]. 天然气地球科学,2022,33(2):277−287.
HAN Yuanhong,LUO Houyong,XUE Yuze,et al. Genesis and helium enrichment mechanism of geothermal water–associated gas in Weihe Basin[J]. Natural Gas Geoscience,2022,33(2):277−287.
[15] 崔浇. 陇中盆地内部活动断裂及其动力学分析[D]. 兰州:中国地震局兰州地震研究所,2023:11–56.
CUI Jiao. Analysis of active faults and their dynamics within the Longzhong Basin[D]. Lanzhou:Lanzhou Institute of Seismology,CEA,2023:11–56.
[16] 马振华,彭廷江,李小苗,等. 陇中盆地及周边地区主夷平面演化与高原隆升[J]. 冰川冻土,2021,43(3):827−840.
MA Zhenhua,PENG Tingjiang,LI Xiaomiao,et al. Evolution of the main planation surfaces in the Longzhong Basin and its surrounding areas and its significance for the uplift of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2021,43(3):827−840.
[17] 唐玉虎,戴霜,黄永波,等. 兰州–民和盆地河口群沉积相和岩石磁化率:祁连山白垩纪隆升的记录[J]. 地学前缘,2008,15(2):261−271.
TANG Yuhu,DAI Shuang,HUANG Yongbo,et al. The early Cretaceous tectonic uplift of Qilian mountains:Evidence from the sedimentary facies and susceptibility of rocks of the Hekou group,Lanzhou–Minhe Basin[J]. Earth Science Frontiers,2008,15(2):261−271.
[18] YUAN Daoyang,GE Weipeng,CHEN Zhenwei,et al. The growth of northeastern Tibet and its relevance to large–scale continental geodynamics:A review of recent studies[J]. Tectonics,2013,32(5):1358−1370.
[19] PIPER A M. A graphic procedure in the geochemical interpretation of water–analyses[J]. Eos,Transactions American Geophysical Union,1944,25(6):914−928.
[20] 马宝强,张凌鹏,范斌,等. 兰州市区地热水地球化学特征分析[J]. 干旱区资源与环境,2019,33(9):125−132.
MA Baoqiang,ZHANG Lingpeng,FAN Bin,et al. Analysis of geochemical characteristics of geothermal water in Lanzhou City[J]. Journal of Arid Land Resources and Environment,2019,33(9):125−132.
[21] 戴蔓,蒋小伟,罗银飞,等. 地热水氢氧同位素控制因素识别与定量计算:以青海贵德盆地为例[J]. 地学前缘,2021,28(1):420−427.
DAI Wan,JIANG Xiaowei,LUO Yinfei,et al. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water:An example from the Guide Basin,Qinghai Province[J]. Earth Science Frontiers,2021,28(1):420−427.
[22] 韩元红,吕俊,张育平,等. 秦岭山前眉县低温地热水及伴生氦气成因机制[J]. 煤田地质与勘探,2024,52(1):168−176.
HAN Yuanhong,LYU Jun,ZHANG Yuping,et al. Genetic mechanisms of low–temperature geothermal water and its associated helium gas in Meixian County in the piedmont of Qinling Mountains[J]. Coal Geology & Exploration,2024,52(1):168−176.
[23] PANG Zhonghe. pH dependant isotope variations in arc–type geothermal waters:New insights into their origins[J]. Journal of Geochemical Exploration,2006,89(1/2/3):306−308.
[24] 庞忠和,樊志成,汪集旸. 漳州盆地地下热水成因与海水混入的同位素证据[J]. 地球化学,1990,19(4):296−302.
PANG Zhonghe,FAN Zhicheng,WANG Jiyang. Isotope evidence for geothermal water genesis and seawater involvement in Zhangzhou Basin,Southeast China[J]. Geochimica,1990,19(4):296−302.
[25] 张文,李玉宏,王利,等. 渭河盆地氦气成藏条件分析及资源量预测[J]. 天然气地球科学,2018,29(2):236−244.
ZHANG Wen,LI Yuhong,WANG Li,et al. The analysis of helium accumulation conditions and prediction of helium resource in Weihe Basin[J]. Natural Gas Geoscience,2018,29(2):236−244.
[26] 查希茜,彭红明,毛绪美,等. 风化土壤封存水H、O稳定同位素揭示的青海东部岩溶发育对青藏高原隆升的响应[J]. 安全与环境工程,2024,31(3):217−224.
ZHA Xixi,PENG Hongming,MAO Xumei,et al. Response of karst development in eastern Qinghai to uplift of Qinghai–Xizang Plateau revealed by H and O stable isotopes in water sequestered by weathered soil[J]. Safety and Environmental Engineering,2024,31(3):217−224.
[27] 周思捷,孙从建,陈伟,等. 黄土高原东部夏半年降水稳定同位素特征及水汽来源分析[J]. 地理学报,2022,77(7):1745−1761.
ZHOU Sijie,SUN Congjian,CHEN Wei,et al. Precipitation isotope characteristics and water vapor sources in summer in eastern Loess Plateau[J]. Acta Geographica Sinica,2022,77(7):1745−1761.
[28] CRAIG H. Isotopic variations in meteoric waters[J]. Science,1961,133(3465):1702−1703.
[29] 马致远. 环境同位素方法在平凉市岩溶地下水研究中的应用[J]. 地质论评,2004,50(4):433−439.
MA Zhiyuan. Application of the environmental isotope technique to the study of karst groundwater in Pingliang City[J]. Geological Review,2004,50(4):433−439.
[30] CHEN Fenli,ZHANG Mingjun,MA Qian,et al. Stable isotopic characteristics of precipitation in Lanzhou City and its surrounding areas,Northwest China[J]. Environmental Earth Sciences,2015,73(8):4671−4680.
[31] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science,1970,170(3962):1088−1090.
[32] 崔锐,王学鹏,冯波,等. 基于水化学同位素技术的地热储层成因模式对比分析:以鲁西北埕宁隆起区为例[J]. 中国岩溶,2023,42(5):969−981.
CUI Rui,WANG Xuepeng,FENG Bo,et al. Comparative analysis of the genesis models of different geothermal reservoirs in Chengning uplift area in northwest Shandong based on hydrochemical isotope technology[J]. Carsologica Sinica,2023,42(5):969−981.
[33] 马宝强,王潇,汤超,等. 同位素技术在地下水研究中的主要应用[J]. 环境工程技术学报,2021,11(5):919−926.
MA Baoqiang,WANG Xiao,TANG Chao,et al. Main applications of isotope technology in groundwater study[J]. Journal of Environmental Engineering Technology,2021,11(5):919−926.
[34] 韩永,王广才,邢立亭,等. 地下水放射性同位素测年方法研究进展[J]. 煤田地质与勘探,2009,37(5):37−42.
HAN Yong,WANG Guangcai,XING Liting,et al. Advances in studying groundwater radioisotope dating methods[J]. Coal Geology & Exploration,2009,37(5):37−42.
[35] CLARK L D,FRITZ P. Environmental isotopes in hydrogeology [M]. Boca Raton:Taylor and Francis,1997.
[36] FARID I,ZOUARI K,RIGANE A,et al. Origin of the groundwater salinity and geochemical processes in detrital and carbonate aquifers:Case of Chougafiya Basin (Central Tunisia)[J]. Journal of Hydrology,2015,530:508−532.
[37] 张人权. 国外水文地质研究中应用同位素方法的现状[J]. 水文地质工程地质,1981,8(6):55−57.
[38] WANG Ya,JIAO J J,CHERRY J A,et al. Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta,China[J]. Science of the Total Environment,2013,461:663−671.
[39] BALLENTINE C J,BURNARD P G. Production,release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):481−538.
[40] 陈悦,陶士振,杨怡青. 中国氦气地球化学特征、聚集规律与前景展望[J]. 中国矿业大学学报,2023,52(1):145−167.
CHEN Yue,TAO Shizhen,YANG Yiqing. Geochemistry characteristics,accumulation regularity and development prospect of helium in China[J]. Journal of China University of Mining & Technology,2023,52(1):145−167.
[41] 张驰,关平,张济华,等. 中国氦气资源分区特征与成藏模式[J]. 天然气地球科学,2023,34(4):656−671.
ZHANG Chi,GUAN Ping,ZHANG Jihua,et al. Zoning characteristics of helium resources and helium accumulation model in China[J]. Natural Gas Geoscience,2023,34(4):656−671.
[42] 陈悦,陶士振,杨怡青,等. 壳–幔混源氦气成因机制与富集因素:以松辽盆地深层天然气中氦气为例[J/OL]. 地学前缘,2024:1–19 [2024-06-20]. https://link.cnki.net/doi/10.13745/j.esf.sf.2024.5.28
CHEN Yue,TAO Shizhen,YANG Yiqing,et al. Genesis mechanism and enrichment factors of shell mantle mixed source helium:Take helium in deep natural gas in the Songliao Basin as an example[J/OL]. Earth Science Frontiers,2024:1–19 [2024-06-20]. https://link.cnki.net/doi/10.13745/j.esf.sf.2024.5.28.
[43] 陶士振,陈悦,杨怡青. 中国氦气资源及区带分类体系、控藏要素有效性与富集模式[J]. 天然气地球科学,2024,35(5):869−889.
TAO Shizhen,CHEN Yue,YANG Yiqing. Helium resource and play classification systems,effective reservoir control elements and enrichment patterns in China[J]. Natural Gas Geoscience,2024,35(5):869−889.
[44] 刘超,孙蓓蕾,曾凡桂,等. 鄂尔多斯盆地东缘石西区块含氦天然气的发现及成因初探[J]. 煤炭学报,2021,46(4):1280−1287.
LIU Chao,SUN Beilei,ZENG Fangui,et al. Discovery and origin of helium–rich gas on the Shixi area,eastern margin of the Ordos Basin[J]. Journal of China Coal Society,2021,46(4):1280−1287.
[45] 何发岐,王付斌,王杰,等. 鄂尔多斯盆地东胜气田氦气分布规律及特大型富氦气田的发现[J]. 石油实验地质,2022,44(1):1−10.
HE Faqi,WANG Fubin,WANG Jie,et al. Helium distribution of Dongsheng gas field in Ordos Basin and discovery of a super large helium–rich gas field[J]. Petroleum Geology & Experiment,2022,44(1):1−10.
[46] 王杰,贾会冲,陶成,等. 鄂尔多斯盆地杭锦旗地区东胜气田氦气成因来源及富集规律[J]. 天然气地球科学,2023,34(4):566−575.
WANG Jie,JIA Huichong,TAO Cheng,et al. Source and enrichment regularity of helium in Dongsheng gas field of Hangjinqi area,Ordos Basin[J]. Natural Gas Geoscience,2023,34(4):566−575.
[47] 高宇,刘全有,吴小奇,等. 鄂尔多斯盆地东胜与大牛地气田壳源氦气成藏差异性[J]. 天然气地球科学,2023,34(10):1790−1800.
GAO Yu,LIU Quanyou,WU Xiaoqi,et al. Research on the difference of crustal helium accumulation in Dongsheng and Daniudi gas fields,Ordos Basin[J]. Natural Gas Geoscience,2023,34(10):1790−1800.
[48] 晁海德,陈建洲,王国仓,等. 柴达木盆地水溶氦气资源的发现及富集机理[J]. 西北地质,2022,55(4):61−73.
CHAO Haide,CHEN Jianzhou,WANG Guocang,et al. Discovery and enrichment mechanism of water soluble helium resources in Qaidam Basin[J]. Northwestern Geology,2022,55(4):61−73.
[49] 柳永刚,张翔,刘子锐,等. 甘肃省首个高品位氦气盆地的发现及勘探前景[J]. 甘肃地质,2020,29(3/4):29−36.
LIU Yonggang,ZHANG Xiang,LIU Zirui,et al. The first discovery and exploration prospect of high grade helium basin in Gansu Province[J]. Gansu Geology,2020,29(3/4):29−36.
[50] 康锐,范立勇,惠洁,等. 鄂尔多斯盆地庆阳气田潜在氦源岩有效性评价[J]. 天然气地球科学,2025,36(3):413−429.
KANG Rui,FAN Liyong,HUI Jie,et al. Effectiveness evaluation of potential helium source rocks in Qingyang gas field,Ordos Basin[J]. Natural Gas Geoscience,2025,36(3):413−429.
[51] 刘成林,丁振刚,陈践发,等. 鄂尔多斯盆地氦源岩特征及生氦潜力[J]. 石油与天然气地质,2023,44(6):1546−1554.
LIU Chenglin,DING Zhengang,CHEN Jianfa,et al. Characteristics and helium–generating potential of helium source rocks in the Ordos Basin[J]. Oil & Gas Geology,2023,44(6):1546−1554.
[52] 尤兵,陈践发,肖洪,等. 壳源富氦天然气藏成藏模式及关键条件[J]. 天然气地球科学,2023,34(4):672−683.
YOU Bing,CHEN Jianfa,XIAO Hong,et al. Accumulation models and key conditions of crustal–derived helium–rich gas reservoirs[J]. Natural Gas Geoscience,2023,34(4):672−683.
[53] BROWN A A. PSFormation of high helium gases:A guide for explorationists[C]//AAPG Convention. New Orleans:AAPG,2010.
[54] SATHAYE K J,LARSON T E,HESSE M A. Noble gas fractionation during subsurface gas migration[J]. Earth and Planetary Science Letters,2016,450:1−9.
[55] CHENG Anran,LOLLAR B S,WARR O,et al. Determining the role of diffusion and basement flux in controlling 4He distribution in sedimentary basin fluids[J]. Earth and Planetary Science Letters,2021,574:117175.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons