Coal Geology & Exploration
Abstract
Background The seismic prediction and assessment technology for coalbed methane (CBM) reservoirs has undergone rapid development for over three decades, playing an indispensable role in CBM exploration. Methods This study reviews the development history and current status of core technologies within the seismic prediction and assessment technical system for CBM reservoirs, including seismic-petrophysical tests, modeling and inversion, seismic wavefield simulation, seismic amplitude versus offset (AVO) inversion and seismic attribute inversion, and integrated seismic prediction of the sweet spot areas of CBM reservoir resources and engineering. Furthermore, this study delves into the impacts and limitations of the characteristics of CBM reservoirs, such as adsorbed gas, pore-fracture dual system, viscoelasticity, and thin layers, on the accuracy and resolution of seismic prediction and assessment technology for CBM reservoirs. Finally, this study proposes future prospects for the development trends and directions of seismic prediction and assessment technology for CBM reservoirs from two perspectives: the shift in the targets for CBM reservoir exploitation and the technological iteration of critical seismic exploration links. Prospects In the future, seismic prediction and assessment technology for CBM reservoirs will closely follow the development direction of deep CBM exploitation and the multi-gas commingling production from coal measures. Breakthroughs are to be achieved in the following technical aspects: fine-scale petrophysical characterization of reservoirs, numerical modeling and simulation, high-precision exploration data acquisition, target-oriented fine-scale processing, multi-parameter high-precision intelligent inversion, and comprehensive identification of sweet spot areas. This will promote a leap forward in the field of CBM exploration.
Keywords
coalbed methane (CBM), ultrasonic test, petrophysical modeling, numerical simulation of seismic wavefield, seismic inversion
DOI
10.12363/issn.1001-1986.25.04.0301
Recommended Citation
WU Haibo, ZHANG Pingsong, XU Shi’ang,
et al.
(2025)
"Current status and future trends of seismic prediction and assessment technology for coalbed methane reservoirs,"
Coal Geology & Exploration: Vol. 53:
Iss.
6, Article 20.
DOI: 10.12363/issn.1001-1986.25.04.0301
Available at:
https://cge.researchcommons.org/journal/vol53/iss6/20
Reference
[1] 徐凤银,肖芝华,陈东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215.
XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205−215.
[2] 吴海波. 煤层气储层开采条件的地震评价方法研究[D]. 徐州:中国矿业大学,2016:1–2.
WU Haibo. Seismic evaluation method research on exploitation condition of coal–bed methane reservoir[D]. Xuzhou:China University of Mining and Technology,2016:1–2.
[3] YU Gang,VOZOFF K,DURNEY D W. Effects of confining pressure and water saturation on ultrasonic compressional wave velocities in coals[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991,28(6):515−522.
[4] YU Gang,VOZOFF K,DURNEY D W. The influence of confining pressure and water saturation on dynamic elastic properties of some Permian coals[J]. Geophysics,1993,58(1):30−38.
[5] 赵群,郝守玲. 煤样的超声速度和衰减各向异性测试[J]. 石油地球物理勘探,2005,40(6):708−710.
ZHAO Qun,HAO Shouling. Testing anisotropy of ultrasonic velocity and attenuation in coal samples[J]. Oil Geophysical Prospecting,2005,40(6):708−710.
[6] 董守华. 气煤弹性各向异性系数实验测试[J]. 地球物理学报,2008,51(3):947−952.
DONG Shouhua. Test on elastic anisotropic coefficients of gas coal[J]. Chinese Journal of Geophysics,2008,51(3):947−952.
[7] YAO Qiuliang,HAN Dehua. Acoustic properties of coal from lab measurement[C]//SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists,2008:1815–1819.
[8] MORCOTE A,MAVKO G,PRASAD M. Dynamic elastic properties of coal[J]. Geophysics,2010,75(6):E227−E234.
[9] 王赟,许小凯,张玉贵. 六种不同变质程度煤的纵横波速度特征及其与密度的关系[J]. 地球物理学报,2012,55(11):3754−3761.
WANG Yun,XU Xiaokai,ZHANG Yugui. Characteristics of P–wave and S–wave velocities and their relationships with density of six metamorphic kinds of coals[J]. Chinese Journal of Geophysics,2012,55(11):3754−3761.
[10] 王赟,张玉贵,许小凯. 六种不同变质程度煤的最大镜质组反射率与弹性参数的关系[J]. 地球物理学报,2013,56(6):2116−2122.
WANG Yun,ZHANG Yugui,XU Xiaokai. Relationship between the maximum vitrinite reflectance and the elastic parameters of coal:A lab ultrasonic measurement of 6 metamorphic kinds of coals[J]. Chinese Journal of Geophysics,2013,56(6):2116−2122.
[11] 王赟,许小凯,张玉贵. 常温压条件下六种变质程度煤的超声弹性特征[J]. 地球物理学报,2016,59(7):2726−2738.
WANG Yun,XU Xiaokai,ZHANG Yugui. Ultrasonic elastic characteristics of six kinds of metamorphic coals in China under room temperature and pressure conditions[J]. Chinese Journal of Geophysics,2016,59(7):2726−2738.
[12] WU Haibo,DONG Shouhua,LI Donghui,et al. Experimental study on dynamic elastic parameters of coal samples[J]. International Journal of Mining Science and Technology,2015,25(3):447−452.
[13] WU Haibo,ZHANG Pingsong,DONG Shouhua,et al. Brittleness index analysis of coal samples[J]. Acta Geophysica,2019,67(3):789−797.
[14] 吴海波,董守华,张平松,等. 基于超声波测试的煤样脆性指数计算与分析[J]. 地球物理学进展,2021,36(3):1138−1144.
WU Haibo,DONG Shouhua,ZHANG Pingsong,et al. Brittleness index calculation and analysis for coal samples based on ultrasonic test data[J]. Progress in Geophysics,2021,36(3):1138−1144.
[15] 李琼,何建军,曹均. 沁水盆地和顺地区煤层气储层物性特征[J]. 石油地球物理勘探,2013,48(5):734−739.
LI Qiong,HE Jianjun,CAO Jun. Physical characteristics of coalbed methane reservoir in Heshun area of Qinshui Basin[J]. Oil Geophysical Prospecting,2013,48(5):734−739.
[16] 李琼,何建军,陈杰. 地层压力条件下沁水盆地煤岩动静态弹性参数同步超声实验研究[J]. 地球物理学报,2017,60(7):2897−2903.
LI Qiong,HE Jianjun,CHEN Jie. Simultaneous ultrasonic experiment of dynamic and static elastic parameters of coal under formation pressure conditions in Qinshui Basin[J]. Chinese Journal of Geophysics,2017,60(7):2897−2903.
[17] ZHAO Tailang,ZOU Guangui,PENG Suping,et al. Analysis of the viscoelasticity in coal based on the fractal theory[J]. Geophysics,2023,88(1):WA177−WA187.
[18] 龚飞,王国伟,康武江,等. 沁水盆地构造煤弹性各向异性及裂缝特征研究[J]. 地球物理学报,2024,67(9):3544−3555.
GONG Fei,WANG Guowei,KANG Wujiang,et al. Study on elastic anisotropy and fracture characteristics of tectonic coals in Qinshui Basin[J]. Chinese Journal of Geophysics,2024,67(9):3544−3555.
[19] 刘雯林. 煤层气地球物理响应特征分析[J]. 岩性油气藏,2009,21(2):113−115.
LIU Wenlin. Geophysical response characteristics of coal bed methane[J]. Lithologic Reservoirs,2009,21(2):113−115.
[20] 陈信平,霍全明,林建东,等. 煤层气储层含气量与其弹性参数之间的关系:思考与初探[J]. 地球物理学报,2013,56(8):2837−2848.
CHEN Xinping,HUO Quanming,LIN Jiandong,et al. The relation between CBM content and the elastic parameters of CBM reservoirs:Reasoning and initial probing[J]. Chinese Journal of Geophysics,2013,56(8):2837−2848.
[21] CHEN Xinping,HUO Quanming,LIN Jiandong,et al. The inverse correlations between methane content and elastic parameters of coal–bed methane reservoirs[J]. Geophysics,2013,78(4):D237−D248.
[22] CHEN Xinping,HUO Quanming,LIN Jiandong,et al. Theory of CBM AVO:I. Characteristics of anomaly and why it is so[J]. Geophysics,2014,79(2):D55−D65.
[23] HUANG Yaping,WEI Mingdi,MALEKIAN R,et al. CBM reservoir rock physics model and its response characteristic study[J]. IEEE Access,2017,5:5837−5843.
[24] 吴海波,黄亚平,张平松,等. 基于等效介质理论的煤层气储层岩石物理建模与应用[J]. 地球物理学报,2021,64(6):2184−2198.
WU Haibo,HUANG Yaping,ZHANG Pingsong,et al. Rock physics model for coal–bed methane reservoir and its application based on equivalent medium theory[J]. Chinese Journal of Geophysics,2021,64(6):2184−2198.
[25] WU Haibo,GUO Jinran,JI Guangzhong,et al. Estimating the anisotropy of the vertical transverse isotropy coal seam by rock physics model–based inversion[J]. Geophysical Prospecting,2024,72(5):2064−2075.
[26] 吴雨珊,邹冠贵,曾葫,等. 煤弹性参数的影响因素分析及其AVO响应特征[J]. 煤炭学报,2023,48(增刊1):194−208.
WU Yushan,ZOU Guangui,ZENG Hu,et al. Analysis of influence factors of coal elastic parameters and its AVO response characteristics[J]. Journal of China Coal Society,2023,48(Sup.1):194−208.
[27] 董守华. 煤弹性各向异性系数测试与P波方位各向异性裂缝评价技术[D]. 徐州:中国矿业大学,2004:43–60.
DONG Shouhua. Evaluation technique of azimuthal anisotropic cracks from P wave data and test of elastic anisotropic coefficients of coal[D]. Xuzhou:China University of Minging and Technology,2004:43–60.
[28] 陈同俊,崔若飞,刘恩儒. VTI型构造煤AVO正演模拟[J]. 煤炭学报,2009,34(4):438−442.
CHEN Tongjun,CUI Ruofei,LIU Enru. AVO forward modeling for VTI coal[J]. Journal of China Coal Society,2009,34(4):438−442.
[29] 陈同俊,王新,崔若飞. 基于方位AVO正演的HTI构造煤裂隙可探测性分析[J]. 煤炭学报,2010,35(4):640−644.
CHEN Tongjun,WANG Xin,CUI Ruofei. The detectability analysis on HTI tectonic coal cracks by azimuthal AVO’s forward modeling[J]. Journal of China Coal Society,2010,35(4):640−644.
[30] 彭苏萍,王宏伟,杜文凤,等. HTI煤层AVO响应特征及其影响因素[J]. 煤炭学报,2013,38(10):1715−1719.
PENG Suping,WANG Hongwei,DU Wenfeng,et al. AVO response characteristics and its influencing factors in HTI coalbed[J]. Journal of China Coal Society,2013,38(10):1715−1719.
[31] 吴海波,刘钦节,王进朝,等. HTI型煤层裂缝参数的地震AVOA响应正演模拟[J]. 煤田地质与勘探,2023,51(5):146−154.
WU Haibo,LIU Qinjie,WANG Jinchao,et al. Forward modeling of amplitude variation with offset and azimuth (AVOA) response for fracture parameters of horizontal transversely isotropic coal seams[J]. Coal Geology & Exploration,2023,51(5):146−154.
[32] 邓小娟,彭苏萍,林庆西,等. 基于各向异性的薄煤层AVO正演方法[J]. 煤炭学报,2010,35(12):2053−2058.
DENG Xiaojuan,PENG Suping,LIN Qingxi,et al. AVO forward method of anisotropic thin coal bed[J]. Journal of China Coal Society,2010,35(12):2053−2058.
[33] 张铁强,孙鹏远,钱忠平,等. 薄煤层AVO响应特征分析[J]. 石油地球物理勘探,2013,48(4):597−603.
ZHANG Tieqiang,SUN Pengyuan,QIAN Zhongping,et al. AVO analysis on thin coalbed[J]. Oil Geophysical Prospecting,2013,48(4):597−603.
[34] YANG Chun,WANG Yun,WANG Yanghua. Reflection and transmission coefficients of a thin bed[J]. Geophysics,2016,81(5):N31−N39.
[35] 李东会,董守华,赵小翠,等. 煤储层双相EDA介质的地震波场模拟[J]. 地球物理学进展,2011,26(2):654−663.
LI Donghui,DONG Shouhua,ZHAO Xiaocui,et al. Seismic wave simulation of biphase EDA medium in coal–bed media[J]. Progress in Geophysics,2011,26(2):654−663.
[36] 师素珍,刘东洋,赵太郎. 煤储层裂隙参数正演分析[J]. 煤炭学报,2018,43(3):784−792.
SHI Suzhen,LIU Dongyang,ZHAO Tailang. Forward modeling of fracture parameters in coal reservoir[J]. Journal of China Coal Society,2018,43(3):784−792.
[37] 杨春,张会星,王赟. 煤层中流体地震可探测性的模拟分析[J]. 地球物理学报,2018,61(4):1605−1614.
YANG Chun,ZHANG Huixing,WANG Yun. Simulation analysis of fluid seismic detectability in coal seams[J]. Chinese Journal of Geophysics,2018,61(4):1605−1614.
[38] 赵争光,杨瑞召,张凯淞,等. 基于最大主曲率的煤储层渗透性预测方法[J]. 煤田地质与勘探,2014,42(2):39−44.
ZHAO Zhengguang,YANG Ruizhao,ZHANG Kaisong,et al. Method and application of coal reservoir permeability prediction based on maximum principal curvature[J]. Coal Geology & Exploration,2014,42(2):39−44.
[39] 常锁亮,刘大锰,林玉成,等. 频谱分解技术在煤田精细构造解释及煤含气性预测中的应用[J]. 煤炭学报,2009,34(8):1015−1021.
CHANG Suoliang,LIU Dameng,LIN Yucheng,et al. Application of spectral decomposition for fine seismic structural interpretation in coalfield and gas–bearing property predication of coal seam[J]. Journal of China Coal Society,2009,34(8):1015−1021.
[40] 董银萍,刘勇,申有义,等. 基于匹配追踪分解的流体活动因子预测煤层气甜点区[J]. 煤田地质与勘探,2018,46(5):90−96.
DONG Yinping,LIU Yong,SHEN Youyi,et al. Prediction of CBM sweet spots via matching trace decomposition–based fluid activity factor[J]. Coal Geology & Exploration,2018,46(5):90−96.
[41] 李艳芳,程建远,王成. 基于支持向量机的地震属性优选及煤层气预测[J]. 煤田地质与勘探,2012,40(6):75−78.
LI Yanfang,CHENG Jianyuan,WANG Cheng. Seismic attribute optimization based on support vector machine and coalbed methane prediction[J]. Coal Geology & Exploration,2012,40(6):75−78.
[42] 车向前,张欣欣,边莉. 利用改进组合交叉熵实现煤层气储层地震属性约简[J]. 煤田地质与勘探,2017,45(3):131−135.
CHE Xiangqian,ZHANG Xinxin,BIAN Li. Seismic attribute reduction of CBM reservoir using improved combined cross entropy[J]. Coal Geology & Exploration,2017,45(3):131−135.
[43] 刘晶,常锁亮,刘最亮,等. 基于构造要素量化聚类分级的煤层气有利区预测[J]. 煤田地质与勘探,2021,49(2):216−224.
LIU Jing,CHANG Suoliang,LIU Zuiliang,et al. Beneficial CBM area prediction based on structural elemental quantitative cluster classification[J]. Coal Geology & Exploration,2021,49(2):216−224.
[44] QI Xuemei,ZHANG Shaocong. Application of seismic multi–attribute fusion method based on D–S evidence theory in prediction of CBM–enriched area[J]. Applied Geophysics,2012,9(1):80−86.
[45] 刘冰. 延川南煤层气勘探地震属性优选与融合方法研究[D]. 长沙:中南大学,2013:39–45.
LIU Bing. Research on the seismic attribute optimization and integration of Yanchuannan coalbed methane exploration[D]. Changsha:Central South University,2013:39–45.
[46] 臧子婧,吴海波,张平松,等. 基于ABC–BP模型的煤层含气量预测[J]. 煤田地质与勘探,2021,49(2):152−158.
ZANG Zijing,WU Haibo,ZHANG Pingsong,et al. Prediction of coal seam gas content based on ABC–BP model[J]. Coal Geology & Exploration,2021,49(2):152−158.
[47] RAMOS C B A,DAVIS T L. 3–D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs[J]. Geophysics,1997,62(6):1683−1695.
[48] 彭苏萍,高云峰,杨瑞召,等. AVO探测煤层瓦斯富集的理论探讨和初步实践:以淮南煤田为例[J]. 地球物理学报,2005,48(6):1475−1486.
PENG Suping,GAO Yunfeng,YANG Ruizhao,et al. Theory and application of AVO for detection of coalbed methane:A case from the Huainan coalfield[J]. Chinese Journal of Geophysics,2005,48(6):1475−1486.
[49] PENG Suping,CHEN Huajing,YANG Ruizhao,et al. Factors facilitating or limiting the use of AVO for coal–bed methane[J]. Geophysics,2006,71(4):C49−C56.
[50] 彭苏萍,杜文凤,殷裁云,等. 基于AVO反演技术的煤层含气量预测[J]. 煤炭学报,2014,39(9):1792−1796.
PENG Suping,DU Wenfeng,YIN Caiyun,et al. Coal–bed gas content prediction based on AVO inversion[J]. Journal of China Coal Society,2014,39(9):1792−1796.
[51] WU Haibo,CHENG Yan,ZHANG Pingsong,et al. Brittleness index calculation based on amplitude–variation–with–offset inversion for coal–bed methane reservoir:A case study of the Qinshui Basin,China[J]. Interpretation:A Journal of Subsurface Characterization,2020,8(1):SA63−SA72.
[52] WU Haibo,WU Rongxin,ZHANG Pingsong,et al. Combined fluid factor and brittleness index inversion for coal–measure gas reservoirs[J]. Geophysical Prospecting,2022,70(4):751−764.
[53] WU Haibo,HUANG Yaping,HUANG Yanhui,et al. Joint Lamé constants and P–wave anisotropic parameter estimation of vertical transverse isotropy coal–measure gas reservoir[J]. Journal of Applied Geophysics,2025,233:105638.
[54] 田忠斌,张胤彬,王建青,等. 富含煤层气储层的叠前地震反演预测方法研究:以山西晋东南测区为例[J]. 地球物理学报,2016,59(12):4494−4504.
TIAN Zhongbin,ZHANG Yinbin,WANG Jianqing,et al. Study on the pre–stack seismic inversion prediction method for rich coal–bed–gas reservoirs:A case in southeastern Shanxi Province[J]. Chinese Journal of Geophysics,2016,59(12):4494−4504.
[55] 田忠斌,董银萍,王建青,等. 沁水盆地榆社–武乡深部煤层地震相控反演及煤层气甜点预测[J]. 煤炭学报,2018,43(6):1605−1613.
TIAN Zhongbin,DONG Yinping,WANG Jianqing,et al. Seismic facies controlled inversion and CBM sweet spot prediction in deep coal seam of Yushe Wuxiang block in Qinshui Basin[J]. Journal of China Coal Society,2018,43(6):1605−1613.
[56] 申有义,田忠斌,王建青,等. 地震非线性随机反演技术在煤层气储层厚度预测中的应用[J]. 煤田地质与勘探,2018,46(2):177−183.
SHEN Youyi,TIAN Zhongbin,WANG Jianqing,et al. Application of seismic nonlinear stochastic inversion technique in prediction of CBM reservoir thickness[J]. Coal Geology & Exploration,2018,46(2):177−183.
[57] 陈贵武,董守华,吴海波,等. 高丰度煤层气富集区地球物理定量识别技术研究与应用[J]. 地球物理学进展,2014,29(5):2151−2156.
CHEN Guiwu,DONG Shouhua,WU Haibo,et al. Research and application of quantitative geophysics recognition in high abundance of coalbed methane–rich region[J]. Progress in Geophysics,2014,29(5):2151−2156.
[58] RUSSELL B H,HEDLIN K,HILTERMAN F J,et al. Fluid–property discrimination with AVO:A Biot–Gassmann perspective[J]. Geophysics,2003,68(1):29−39.
[59] MAVKO G,MUKERJI T,DVORKIN J. The rock physics handbook 2nd edition[M]. New York:Cambridge University Press,2009:273–282.
[60] WU Haibo,ZHU Shujie,LIU Qinjie,et al. Amplitude variation with offset and azimuth inversion to predict and evaluate coal seam fracture parameters[J]. Frontiers of Earth Science,2023,17(2):505−513.
[61] 孙迪. 地震波在煤岩双相介质中传播衰减特征研究[D]. 焦作:河南理工大学,2021.
SUN Di. Study on attenuation characteristics of seismic wave propagation in coal rock dual phase medium[D]. Jiaozuo:Henan Polytechnic University,2021.
[62] ZHAO Tailang,ZOU Guangui,GONG Fei,et al. Attenuation analysis in coal based on a fractal viscoelastic model[J]. Acta Geophysica,2024,72(6):3917−3923.
[63] 王赟,杨春,芦俊. 薄互层弹性波反演面临的困境[J]. 地球物理学报,2018,61(3):1118−1135.
WANG Yun,YANG Chun,LU Jun. Dilemma faced by elastic wave inversion in thinly layered media[J]. Chinese Journal of Geophysics,2018,61(3):1118−1135.
[64] 张川,杨春,王赟. 关于薄层与单界面模型弹性反射透射系数的讨论[J]. 煤田地质与勘探,2015,43(2):86−90.
ZHANG Chuan,YANG Chun,WANG Yun. Discussion on elastic reflection and transmission coefficients of thin–bed and single interface models[J]. Coal Geology & Exploration,2015,43(2):86−90.
[65] 黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.
HUANG Zhongwei,LI Guofu,YANG Ruiyue,et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.
[66] 赵志刚,朱学申,王存武,等. 基于资源性与可压性的深部煤层气“甜点”预测[J]. 煤田地质与勘探,2024,52(8):22−31.
ZHAO Zhigang,ZHU Xueshen,WANG Cunwu,et al. Predicting the “sweet spot”of deep coalbed methane based on resource conditions and fracability[J]. Coal Geology & Exploration,2024,52(8):22−31.
[67] 王佟,王庆伟,傅雪海. 煤系非常规天然气的系统研究及其意义[J]. 煤田地质与勘探,2014,42(1):24−27.
WANG Tong,WANG Qingwei,FU Xuehai. The significance and the systematic research of the unconventional gas in coal measures[J]. Coal Geology & Exploration,2014,42(1):24−27.
[68] 李勇,王延斌,孟尚志,等. 煤系非常规天然气合采地质基础理论进展及展望[J]. 煤炭学报,2020,45(4):1406−1418.
LI Yong,WANG Yanbin,MENG Shangzhi,et al. Theoretical basis and prospect of coal measure unconventional natural gas co–production[J]. Journal of China Coal Society,2020,45(4):1406−1418.
[69] 秦勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报,2021,46(8):2387−2399.
QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society,2021,46(8):2387−2399.
[70] 杨光明,金学良,张宪旭,等. 宽频宽方位处理技术在淮北矿区全数字高密度地震勘探中的应用[J]. 煤田地质与勘探,2020,48(6):55−63.
YANG Guangming,JIN Xueliang,ZHANG Xianxu,et al. Application of broadband and wide azimuth processing technology in full digital high density seismic exploration in Huaibei mining area[J]. Coal Geology & Exploration,2020,48(6):55−63.
[71] 董守华,黄亚平,金学良,等. 煤田高密度三维地震勘探技术的发展现状及趋势[J]. 煤田地质与勘探,2023,51(2):273−282.
DONG Shouhua,HUANG Yaping,JIN Xueliang,et al. Development status and trend of high–density 3D seismic exploration technology for coal fields[J]. Coal Geology & Exploration,2023,51(2):273−282.
[72] 田忠斌,李娟,申有义,等. OVT域处理技术在沁水盆地深部煤层气勘探中的应用[J]. 煤田地质与勘探,2020,48(6):93−102.
TIAN Zhongbin,LI Juan,SHEN Youyi,et al. The application of OVT domain processing technology in deep CBM exploration in Qinshui Basin[J]. Coal Geology & Exploration,2020,48(6):93−102.
[73] 李慧婷,常锁亮,张生,等. 基于各向异性介质理论的煤系地震数据高分辨处理方法与应用[J]. 煤田地质与勘探,2024,52(6):145−153.
LI Huiting,CHANG Suoliang,ZHANG Sheng,et al. A high–resolution method for processing coal measures seismic data based on anisotropic medium theories and its application[J]. Coal Geology & Exploration,2024,52(6):145−153.
[74] 韩宏伟,程远锋,张云银,等. 储层物性的地震预测技术综述[J]. 地球物理学进展,2021,36(2):595−610.
HAN Hongwei,CHENG Yuanfeng,ZHANG Yunyin,et al. Review of seismic prediction of reservoir geophysical properties[J]. Progress in Geophysics,2021,36(2):595−610.
[75] 宋朝辉. 基于大数据的可解释性机器学习储层预测方法研究[D]. 北京:中国石油大学(北京),2022:25–57.
SONG Zhaohui. Research of interpretable machine learning reservoir prediction method based on big data[D]. Beijing:China University of Petroleum (Beijing),2022:25–57.
[76] 谢鹏飞. 基于生成对抗神经网络的地震储层预测方法研究[D]. 北京:中国石油大学(北京),2023:69–90.
XIE Pengfei. Seismic reservoir prediction method research based on generative adversarial neural networks[D]. Beijing:China University of Petroleum (Beijing),2023:69–90.
[77] 李子航. 基于深度学习地震叠前反演方法与应用研究[D]. 北京:中国石油大学(北京),2023:65–96.
LI Zihang. Deep learning–based seismic pre–stack inversion method and application research[D]. Beijing:China University of Petroleum (Beijing),2023:65–96.
[78] 骆迪,王宏斌,蔡峰,等. 深度学习技术在地震储层预测中的应用及挑战[J]. 石油地球物理勘探,2024,59(3):640−651.
LUO Di,WANG Hongbin,CAI Feng,et al. Application and challenges of deep learning technology in seismic data–based reservoir prediction[J]. Oil Geophysical Prospecting,2024,59(3):640−651.
[79] 王攀. 煤层地震波场特征分析及波形反演方法研究[D]. 北京:中国矿业大学(北京),2019.
WANG Pan. Study on seismic wave field characteristic analysis and waveform inversion method of coal seam[D]. Beijing:China University of Mining & Technology (Beijing),2019.
[80] 郭银玲. 煤田DAS–VSP数据处理与地层弹性参数预测方法研究[D]. 北京:中国矿业大学(北京),2023:13–110.
GUO Yinling. Study on processing of DAS–VSP data and prediction of stratum elastic parameters in coalfields[D]. Beijing:China University of Mining & Technology (Beijing),2023:13–110.
[81] 杨震,芦俊,孟星浑,等. 薄煤层PP波与PS波AVA地震响应特征[J]. 煤炭学报,2015,40(6):1435−1441.
YANG Zhen,LU Jun,MENG Xinghun,et al. PP– and PS–wave AVA response characteristics for thin coal seam[J]. Journal of China Coal Society,2015,40(6):1435−1441.
[82] LU Jun,MENG Xinghun,WANG Yun,et al. Prediction of coal seam details and mining safety using multicomponent seismic data:A case history from China[J]. Geophysics,2016,81(5):B149−B165.
[83] 安莹,芦俊,杨春. 含煤地层多波AVO地震响应[J]. 煤炭学报,2018,43(3):793−800.
AN Ying,LU Jun,YANG Chun. Multi–wave AVO seismic responses of coal bearing strata[J]. Journal of China Coal Society,2018,43(3):793−800.
[84] YANG Chun,WANG Yun. Joint PP–PS seismic prestack inversion of thin–bed reservoirs[J]. Journal of Geophysics and Engineering,2022,19(4):897−913.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons