•  
  •  
 

Coal Geology & Exploration

Abstract

Background High-precision and long-distance exploration of geological conditions is required for coal extraction and disaster prevention in coal mines. However, traditional drilling and geophysical prospecting methods face technical bottlenecks such as insufficient exploration accuracy and limited exploration ranges. Borehole geophysical prospecting technology integrates the reliable and straightforward axial results of drilling with the high-resolution transverse results of geophysical prospecting, providing technical support for safe, efficient, and intelligent coal mining. Based on the construction spaces, this study categorizes borehole geophysical prospecting technology into four types: i.e., intra-borehole, inter-borehole, borehole-surface, and borehole-roadway. Furthermore, it presents the primary advances and applicable conditions of the former three types from the perspective of basic principles, technological advances, and application examples. Progress For intra-borehole geophysical technology, high-frequency (HF) reflection radar within a near-horizontal borehole in coal mines allows for the coal-rock interface exploration and geological structure identification within a radial distance range of 0 to 10 m. The three-component transient electromagnetic technology deployed within a borehole can pinpoint low-resistance anomalous zones within a radial range of 30 m. Meanwhile, borehole 3D laser scanning assists in reconstructing underground goaves with centimeter-level precision. For inter-borehole geophysical prospecting technology, inter-borehole CT imaging based on electromagnetic or seismic waves enables precise delineation of anomalous bodies including faults, collapse pillars, and burnt areas through trans-borehole tomography. Using inter-borehole seismic and electromagnetic wave joint perspective, combined with velocity and resistivity interpretations, the properties of inter-borehole geological anomalous bodies can be inferred. Regarding borehole-surface geophysical prospecting technology, the reverse vertical seismic profile (RVSP) method, which adopts seismic excitation in a borehole and geophones on the surface, enables high-precision spatial positioning of goaves. The borehole-surface charging method assists in estimating the static water reserves of goaves by delineating the distribution range of the electric fields of low-resistance conductors. Prospects Future research and development efforts in borehole geophysical prospecting technology should focus on directional exploration while drilling, far-field radial exploration, and dynamic monitoring based on multiple fields and parameters. Furthermore, it is necessary to establish an integrated borehole geophysical prospecting technical chain that incorporates exploration, detection, and monitoring and construct a 3D, transparent geological model driven by cluster borehole data. These will provide a transparent geological guarantee for safe, efficient, and intelligent coal mining.

Keywords

borehole geophysical prospecting, borehole radar, borehole transient electromagnetic, inter-borehole seismic exploration, inter-borehole electrical method, reverse vertical seismic profile (RVSP), borehole-surface charging method

DOI

10.12363/issn.1001-1986.25.04.0263

Reference

[1] 滕吉文,张雪梅,杨辉. 中国主体能源:煤炭的第二深度空间勘探、开发和高效利用[J]. 地球物理学进展,2008,23(4):972−992.

TENG Jiwen,ZHANG Xuemei,YANG Hui. Exploration and exploitation in second deep space of crust interior and high efficient utilization of the major energy:Coal resource in China[J]. Progress in Geophysics,2008,23(4):972−992.

[2] 底青云,朱日祥,薛国强,等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报,2019,62(6):2128−2138.

DI Qingyun,ZHU Rixiang,XUE Guoqiang,et al. New development of the electromagnetic (EM) methods for deep exploration[J]. Chinese Journal of Geophysics,2019,62(6):2128−2138.

[3] 袁亮,张通,王玥晗,等. 深部煤炭资源安全高效开采科学问题及关键技术[J]. 煤炭学报,2025,50(1):1−12.

YUAN Liang,ZHANG Tong,WANG Yuehan,et al. Scientific problems and key technologies for safe and efficient mining of deep coal resources[J]. Journal of China Coal Society,2025,50(1):1−12.

[4] 程久龙,李飞,彭苏萍,等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报,2014,39(8):1742−1750.

CHENG Jiulong,LI Fei,PENG Suping,et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society,2014,39(8):1742−1750.

[5] 张平松,李洁. 我国煤矿井下钻孔物探技术发展与分析[J]. 地球物理学进展,2023,38(4):1885−1897.

ZHANG Pingsong,LI Jie. Development and analysis of borehole geophysical prospecting technology in China[J]. Progress in Geophysics,2023,38(4):1885−1897.

[6] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1−30.

KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1−30.

[7] 李化敏,付凯. 煤矿深部开采面临的主要技术问题及对策[J]. 采矿与安全工程学报,2006,23(4):468−471.

LI Huamin,FU Kai. Some major technical problems and countermeasures for deep mining[J]. Journal of Mining & Safety Engineering,2006,23(4):468−471.

[8] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1−7.

YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1−7.

[9] 王国法,任怀伟,庞义辉,等. 煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 煤炭科学技术,2020,48(7):1−27.

WANG Guofa,REN Huaiwei,PANG Yihui,et al. Research and engineering progress of intelligent coal mine technical system in early stages[J]. Coal Science and Technology,2020,48(7):1−27.

[10] 李博凡. 基于钻孔物探的多元数据融合分析技术及应用[J]. 煤矿机械,2025,46(2):148−152.

LI Bofan. Fusion analysis technology and application of multivariate data based on drilling physical exploration[J]. Coal Mine Machinery,2025,46(2):148−152.

[11] 王康健,唐明,石学锋,等. 综合孔中物探技术在长距离定向钻孔精细探查中的应用[J/OL]. 物探化探计算技术,2024:1–10 [2024-10-15]. https://kns.cnki.net/kcms/detail/51.1242.P.20241014.1712.002.html.

WANG Kangjian,TANG Ming,SHI Xuefeng,et al. Application of comprehensive borehole geophysical exploration technology in fine exploration of long–distance directional drilling[J/OL]. Computing Techniques for Geophysical and Geochemical Exploration,2024:1–10 [2024-10-15]. https://kns.cnki.net/kcms/detail/51.1242.P.20241014.1712.002.html.

[12] 曾繁超. 对地下物探工作的几点意见[J]. 中国地质,1989,16(6):13−14.

[13] 佟文琪,范秀荣. 地下物探的发展现状[J]. 国外地质勘探技术,1983(12):1−7.

[14] 蔡柏林. 测井与井中物探的回顾和展望[J]. 物探与化探,1989,13(5):370−380.

CAI Bolin. Logging and borehole geophysical prospecting:Review and prospects[J]. Geophysical and Geochemical Exploration,1989,13(5):370−380.

[15] 徐宏阳,翟成,夏济根,等. 基于穿层钻孔声波远探测有限元方法的煤岩界面成像[J]. 煤田地质与勘探,2024,52(3):118−129.

XU Hongyang,ZHAI Cheng,XIA Jigen,et al. Coal–rock interface imaging based on acoustic remote reflection logging within crossing boreholes using the finite element method[J]. Coal Geology & Exploration,2024,52(3):118−129.

[16] 王腾飞,程玖兵,朱峰,等. 超深层目标随钻测井引导的动态地震成像[J]. 地球物理学报,2023,66(1):54−64.

WANG Tengfei,CHENG Jiubing,ZHU Feng,et al. Dynamic seismic imaging driven by logging while drilling in ultra–deep targets[J]. Chinese Journal of Geophysics,2023,66(1):54−64.

[17] 尹奇峰,潘冬明,于景邨,等. 基于三维RVSP多孔联合技术煤矿采空区的探测[J]. 煤炭学报,2014,39(7):1338−1344.

YIN Qifeng,PAN Dongming,YU Jingcun,et al. 3D RVSP multihole united exploration technology in coal mine goaf detection[J]. Journal of China Coal Society,2014,39(7):1338−1344.

[18] 曹辉. 井中地球物理技术综述[J]. 勘探地球物理进展,2004,27(4):235−240.

CAO Hui. A review of borehole geophysics[J]. Progress in Exploration Geophysics,2004,27(4):235−240.

[19] 刘磊,范涛,李博凡. 煤矿井下孔中直流电法超前探测数值模拟研究[J]. 物探化探计算技术,2020,42(2):239−243.

LIU Lei,FAN Tao,LI Bofan. Numerical simulation of advanced detection by direct current method in borehole of coal mine[J]. Computing Techniques for Geophysical and Geochemical Exploration,2020,42(2):239−243.

[20] 马新民,毛德强,闫利刚,等. 基于跨孔电阻率CT的污染阻隔帷幕性能检测[J]. 环境工程,2023,41(8):188−195.

MA Xinmin,MAO Deqiang,YAN Ligang,et al. Performance assessment of contamination barrier curtain based on cross–borehole electrical resistivity tomography (CT)[J]. Environmental Engineering,2023,41(8):188−195.

[21] 李尧,李术才,刘斌,等. 钻孔雷达探测地下不良地质体的正演模拟及其复信号分析[J]. 岩土力学,2017,38(1):300−308.

LI Yao,LI Shucai,LIU Bin,et al. Forward simulation and complex signal analysis of borehole radar detection for underground adverse geological bodies[J]. Rock and Soil Mechanics,2017,38(1):300−308.

[22] 智庆全,武军杰,王兴春,等. 基于瞬变冲激时刻的地–井TEM快速定量解释方法[J]. 煤田地质与勘探,2022,50(7):44−51.

ZHI Qingquan,WU Junjie,WANG Xingchun,et al. Fast quantitative interpretation of surface–borehole TEM using transient impulse peak time[J]. Coal Geology & Exploration,2022,50(7):44−51.

[23] 刘磊,赵兆,房哲. 煤矿钻孔电磁波透视技术及试验[C]//2020年煤炭安全高效绿色智能开采地质保障学术会议论文集. 鄂尔多斯,2020:160–163.

[24] 王勃,李晓昭,申思洪任,等. 矿山地下空间探测技术现状及发展趋势[J]. 绿色矿山,2024,2(3):273−290.

WANG Bo,LI Xiaozhao,SHEN Sihongren,et al. Status and development trend of mine underground space detection technology[J]. Journal of Green Mine,2024,2(3):273−290.

[25] 邓波,李金忠. 井中物探方法在金属矿勘查中的应用效果[J]. 四川地质学报,2014,34(2):276−280.

DENG Bo,LI Jinzhong. The application of borehole geophysical exploration to metallic mineral exploration[J]. Acta Geologica Sichuan,2014,34(2):276−280.

[26] 李冬,杜文凤,许献磊. 矿井地质雷达超前探测方法及应用研究[J]. 煤炭科学技术,2018,46(7):223−228.

LI Dong,DU Wenfeng,XU Xianlei. Study on advanced detection method and application of mine geological radar[J]. Coal Science and Technology,2018,46(7):223−228.

[27] 蒋必辞,程建远,李萍,等. 基于钻孔雷达的透明工作面构建方法[J]. 煤田地质与勘探,2022,50(1):128−135.

JIANG Bici,CHENG Jianyuan,LI Ping,et al. Construction method of transparent working face based on borehole radar[J]. Coal Geology & Exploration,2022,50(1):128−135.

[28] 何发亮,李苍松,粟健,等. 声波探测技术的新发展及其应用[J]. 中国铁道科学,1999,20(4):83−87.

HE Faliang,LI Cangsong,SU Jian,et al. Recent development and application of acoustic sounding[J]. China Railway Science,1999,20(4):83−87.

[29] 程久龙,姜成麟,李垚,等. 钻孔瞬变电磁法方位线圈扫描探测定位方法[J]. 煤炭学报,2024,49(1):616−627.

CHENG Jiulong,JIANG Chenglin,LI Yao,et al. Research on borehole transient electromagnetic positioning method of azimuthal coil scanning detection[J]. Journal of China Coal Society,2024,49(1):616−627.

[30] 范涛,李萍,赵兆,等. 钻孔瞬变电磁方法探测越界开采采空区的应用[J]. 煤田地质与勘探,2022,50(1):20−24.

FAN Tao,LI Ping,ZHAO Zhao,et al. Application of borehole transient electromagnetic method in detecting the cross–border mining goaf[J]. Coal Geology & Exploration,2022,50(1):20−24.

[31] 薛建志,贾会会,多晓松,等. 三维激光扫描勘查方法在采空区勘查中的应用[J]. 科学技术创新,2022(10):65−68.

XUE Jianzhi,JIA Huihui,DUO Xiaosong,et al. Application of 3D laser scanning exploration method in goaf exploration[J]. Scientific and Technological Innovation,2022(10):65−68.

[32] 余俊辉. 煤矿井下钻孔雷达技术在煤层顶底板探测中的应用[J]. 能源与节能,2024(5):263−267.

YU Junhui. Application of borehole radar technology in detection of coal seam roof and floor[J]. Energy and Energy Conservation,2024(5):263−267.

[33] 陈义群,肖柏勋. 论探地雷达现状与发展[J]. 工程地球物理学报,2005,2(2):149−155.

CHEN Yiqun,XIAO Boxun. On the status quo and development of ground penetrating radar[J]. Chinese Journal of Engineering Geophysics,2005,2(2):149−155.

[34] COOK J C. Borehole–radar exploration in a coal seam[J]. Geophysics,1977,42(6):1254−1257.

[35] NICKEL H,SENDER F,THIERBACH R,et al. Exploring the interior of salt domes from boreholes[J]. Geophysical Prospecting,2006,31(1):131−148.

[36] SATO M,TANIMOTO T. A shielded loop array antenna for a directional borehole radar[J]. Special Paper (Geologian tutkimuskestus (Finland)),1992,16:323−327.

[37] EBIHARA S. Directional borehole radar with dipole antenna array using optical modulators[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(1):45−58.

[38] SATO M,TAKAYAMA T. A novel directional borehole radar system using optical electric field sensors[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(8):2529−2535.

[39] EBIHARA S,KURODA T,KORESAWA Y,et al. Improved discrimination of subsurface targets using a polarization–sensitive directional borehole radar[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(11):6429−6443.

[40] ZHOU Binzhong,HUO Jianjian,MASON I M,et al. Fracture identification by reflected guided borehole radar waves[J]. ASEG Extended Abstracts,2019,2019(1):1−4.

[41] FULLAGAR P K,ZHOU Binzhong,FALLON G N. Automated interpretation of geophysical borehole logs for orebody delineation and grade estimation[J]. Mineral Resources Engineering,1999,8(3):269−284.

[42] SINGH K K K. Borehole radar for delineation of unapproachable underground coal–mine galleries below Grand Chord railway lines[J]. Current Science,2015,109(9):1722−1727.

[43] ZHOU Hui,SATO M. Subsurface cavity imaging by crosshole borehole radar measurements[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(2):335−341.

[44] 虎维岳,南生辉. 雷达探测技术及应用[J]. 煤田地质与勘探,1997,25(增刊1):68−71.

HU Weiyue,NAN Shenghui. Radar measurement technique and application[J]. Coal Geology & Exploration,1997,25(Sup.1):68−71.

[45] 南生辉. 钻孔雷达定向测量技术与应用[J]. 煤田地质与勘探,1998,26(增刊1):56−58.

NAN Shenghui. Technique and application of directional prospecting of borehole radar system[J]. Coal Geology & Exploration,1998,26(Sup.1):56−58.

[46] 刘四新,倪建福. 井间电磁法综述[J]. 地球物理学进展,2020,35(1):153−165.

LIU Sixin,NI Jianfu. Review for cross–hole electromagnetic method[J]. Progress in Geophysics,2020,35(1):153−165.

[47] 马春光. 瞬态脉冲雷达成像测井及实验研究[D]. 成都:电子科技大学,2015:86–102.

MA Chunguang. Transient pulse radar imaging well–logging and experimental research[D]. Chengdu:University of Electronic Science and Technology of China,2015:86–102.

[48] 刘四新,王文天,傅磊,等. 基于BS–MUSIC的定向钻孔雷达三维成像算法[J]. 地球物理学报,2017,60(12):4928−4937.

LIU Sixin,WANG Wentian,FU Lei,et al. 3D borehole radar imaging method based on BS–MUSIC[J]. Chinese Journal of Geophysics,2017,60(12):4928−4937.

[49] 王文天. 定向钻孔雷达方位识别及三维成像算法研究[D]. 长春:吉林大学,2018.

WANG Wentian. Research on azimuth recognition and 3D imaging algorithm of directional borehole radar[D]. Changchun:Jilin University,2018.

[50] 许献磊,王一丹,朱鹏桥,等. 基于高频雷达波的煤岩层位识别与追踪方法研究[J]. 煤炭科学技术,2022,50(7):50−58.

XU Xianlei,WANG Yidan,ZHU Pengqiao,et al. Research on coal and rock horizond identification and tracking method based on high frequency radar waves[J]. Coal Science and Technology,2022,50(7):50−58.

[51] 刘春生. 矿井水害的钻物探一体化地质超前精细综合探测系统与应用[J]. 晋控科学技术,2023(4):1−7.

LIU Chunsheng. Integrated geophysical and advanced comprehensive detection system for drilling and water hazard in mines and its application[J]. Jinneng Holding Science and Technology,2023(4):1−7.

[52] 陈卫营,韩思旭,薛国强. 电性源地–井瞬变电磁法全分量响应特性与探测能力分析[J]. 地球物理学报,2019,62(5):1969−1980.

CHEN Weiying,HAN Sixu,XUE Guoqiang. Analysis on the full–component response and detectability of electric source surface–to–borehole TEM method[J]. Chinese Journal of Geophysics,2019,62(5):1969−1980.

[53] 李学潜,韩德品,王程,等. 巷–孔瞬变电磁法在探测含导水构造中的应用[J]. 中国煤炭地质,2019,31(2):77−82.

LI Xueqian,HAN Depin,WANG Cheng,et al. Application of roadway–borehole TEM in water–bearing and water conducting structure prospecting[J]. Coal Geology of China,2019,31(2):77−82.

[54] 孙怀凤,张莹莹,赵友超,等. 钻孔瞬变电磁法研究现状综述[J]. 煤田地质与勘探,2022,50(7):85−97.

SUN Huaifeng,ZHANG Yingying,ZHAO Youchao,et al. Present study situation review of borehole transient electromagnetic method[J]. Coal Geology & Exploration,2022,50(7):85−97.

[55] WAIT J R. Transient electromagnetic propagation in a conducting medium[J]. Geophysics,1951,16(2):213−221.

[56] HJELT S E. The transient electromagnetic field of a two–layer sphere[J]. Geoexploration,1971,9(4):213−229.

[57] NABIGHIAN M N. Electromagnetic methods in applied geophysics:Theory (Volume 1)[M]. Tulsa:Society of Exploration Geophysicists,1988.

[58] 丁浩. 孔中瞬变电磁超前探测系统天线设计与实验[D]. 长春:吉林大学,2024:5–35.

DING Hao. Antenna design and experimental of borehole transient electromagnetic method advance detection system[D]. Changchun:Jilin University,2024:5–35.

[59] DYCK A V,WEST G F. The role of simple computer models in interpretations of wide–band,drill–hole electromagnetic surveys in mineral exploration[J]. Geophysics,1984,49(7):957−980.

[60] WILLIAMS P K,FRASER G A. The use of transient electromagnetics in the exploration for conductive sulphides associated with Cu–Au mineralisation,at Moonta,South Australia[J]. Exploration Geophysics,1992,23(3):507−514.

[61] SIJOY C D,CHATURVEDI S. Calculation of accurate resistance and inductance for complex magnetic coils using the finite–difference time–domain technique for electromagnetics[J]. IEEE Transactions on Plasma Science,2008,36(1):70−79.

[62] 朴化荣. 电磁测深法原理[M]. 北京:地质出版社,1990:185–203.

[63] 牛之琏. 时间域电磁法原理[M]. 长沙:中南大学出版社,2007:210–215.

[64] 于景邨,刘志新,岳建华,等. 煤矿深部开采中的地球物理技术现状及展望[J]. 地球物理学进展,2007,22(2):586−592.

YU Jingcun,LIU Zhixin,YUE Jianhua,et al. Development and prospect of geophysical technology in deep mining[J]. Progress in Geophysics,2007,22(2):586−592.

[65] 陈丁. 矿井全空间巷道孔中瞬变电磁波场特征数值模拟研究[D]. 北京:中国矿业大学(北京),2016:53–78.

CHEN Ding. Study on wave field characteristics of drillhole transient electromagnetic in mine roadway whole space using numerical simulation[D]. Beijing:China University of Mining & Technology (Beijing),2016:53–78.

[66] 范涛. 孔巷瞬变电磁动源定接收方法探测采空区试验[J]. 煤炭学报,2017,42(12):3229−3238.

FAN Tao. Experimental study on the exploration of coal mine goaf by dynamic source and fixed reception roadway–borehole TEM detection method[J]. Journal of China Coal Society,2017,42(12):3229−3238.

[67] 程建远,陆自清,蒋必辞,等. 煤矿巷道快速掘进的“长掘长探”技术[J]. 煤炭学报,2022,47(1):404−412.

CHENG Jianyuan,LU Ziqing,JIANG Bici,et al. A novel technology of “long excavation/long detection” for rapid excavation in coal mine roadway[J]. Journal of China Coal Society,2022,47(1):404−412.

[68] 齐光辉. 小窑破坏区资源复采利用技术实践[J]. 煤炭工程,2009,41(9):7−9.

[69] 徐忠和. 旧采残煤的资源、综采方法与矿压规律研究[D]. 太原:太原理工大学,2016:23–42.

XU Zhonghe. Research on remnant coal,fully–mechanized mining technology and strata behavior regularity with the old mining method[D]. Taiyuan:Taiyuan University of Technology,2016:23–42.

[70] 李文. 煤矿采空区地面综合物探方法优化研究[J]. 煤炭科学技术,2017,45(1):194−199.

LI Wen. Optimization study of surface comprehensive geophysical detection methods of coal mine goafs[J]. Coal Science and Technology,2017,45(1):194−199.

[71] 李令斌. 三维激光扫描技术在采空区勘查中的应用:以淄博某关闭矿山采空区为例[J]. 冶金管理,2019(23):99.

[72] 张新光,张金龙,朱和玲. 空区激光自动扫描系统(CALS)的研究与应用[J]. 采矿技术,2009,9(1):70−72.

[73] 赵兴,林娟. 空区激光自动扫描系统在采空区探测中的应用[J]. 采矿技术,2015,15(6):53−54.

[74] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature,187(4736):493–494.

[75] MILLER F,POTVIN Y,JACOB D. Laser measurement of open stope dilution[J]. CIM Bulletin,1992,85:96−102.

[76] HUBER D F,VANDAPEL N. Automatic three–dimensional underground mine mapping[J]. International Journal of Robotics Research,2006,25(1):7−17.

[77] 杨必胜,梁福逊,黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报,2017,46(10):1509−1516.

YANG Bisheng,LIANG Fuxun,HUANG Ronggang. Progress,challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1509−1516.

[78] 张耀平,彭林,刘圆. 基于C–ALS实测的采空区三维建模技术及工程应用研究[J]. 矿业研究与开发,2012,32(1):91−94.

ZHANG Yaoping,PENG Lin,LIU Yuan. 3D modeling technology of cavity based on C–ALS detection and its engineering application[J]. Mining Research and Development,2012,32(1):91−94.

[79] 周逸文,张涛,段隆臣,等. 我国矿山采空区综合治理研究综述[J]. 安全与环境工程,2022,29(4):220−230.

ZHOU Yiwen,ZHANG Tao,DUAN Longchen,et al. Summary of research on comprehensive treatment of mine goaf in China[J]. Safety and Environmental Engineering,2022,29(4):220−230.

[80] 周游. 露天矿复杂空区的精准探测及稳定性分析[J]. 矿业研究与开发,2023,43(7):74−78.

ZHOU You. Accurate detection and stability analysis of complex goaf in open–pit mine[J]. Mining Research and Development,2023,43(7):74−78.

[81] 马炳镇,牛建立,白铭波,等. 房柱式采空区高精度勘查技术[J]. 煤矿安全,2022,53(2):99−103.

MA Bingzhen,NIU Jianli,BAI Mingbo,et al. Precise exploration technology of room pillar goaf in Shenfu mining area[J]. Safety in Coal Mines,2022,53(2):99−103.

[82] 王苏龙. 跨孔地震波CT技术在煤矿多层采空区注浆效果检测中的应用[J]. 建井技术,2024,45(6):14−18.

WANG Sulong. Application of cross–hole seismic wave CT technology in the detection of grouting effect in multi–layer goaf in coal mine[J]. Mine Construction Technology,2024,45(6):14−18.

[83] 陈杭,邢亚东,邓超云. 跨孔电磁波CT在煤矿采空区探测中的应用探究[J]. 矿山测量,2022,50(1):21−23.

CHEN Hang,XING Yadong,DENG Chaoyun. Application of borehole electromagnetic wave CT in coal mine goaf detection[J]. Mine Surveying,2022,50(1):21−23.

[84] DINES K A,LYTLE R J. Computerized geophysical tomography[J]. Proc IEEE 1979,67:1065–1073.

[85] 曹立斌,孟永良,周建兰. 电阻率层析成像技术的回顾与展望[J]. 勘探地球物理进展,2004,27(3):170−173.

CAO Libin,MENG Yongliang,ZHOU Jianlan. Review and prospect of resistivity tomography technology[J]. Progress in Exploration Geophysics,2004,27(3):170−173.

[86] 程久龙,于师建,邱伟,等. 工作面电磁波高精度层析成像及其应用[J]. 煤田地质与勘探,1999,27(4):62−64.

CHENG Jiulong,YU Shijian,QIU Wei,et al. High accuracy computer tomography of electromagnetic wave on working faces and its application[J]. Coal Geology & Exploration,1999,27(4):62−64.

[87] 侯恩科,郝珠成,王朝辉,等. 坑透层析成像技术在金矿定位预测中的应用[J]. 地质与勘探,2001,37(4):43−45.

HOU Enke,HAO Zhucheng,WANG Zhaohui,et al. The positioning prediction of gold orebody by electromagnetic wave computerized tomography[J]. Geology and Prospecting,2001,37(4):43−45.

[88] 孙建鑫. 电磁波CT法在地铁隧道岩溶探测中的应用研究[D]. 北京:中国地质大学(北京),2022:76–98.

SUN Jianxin. Application of electromagnetic wave computerized tomography in metro tunnel detection in karst area[D]. Beijing:China University of Geosciences (Beijing),2022:76–98.

[89] 刘乐平,李红立,苏南. 跨孔电磁波CT探测在采空区帷幕注浆工程中的应用[J]. 煤炭科学技术,2020,48(增刊2):98−103.

LIU Leping,LI Hongli,SU Nan. Application of cross–hole electromagnetic wave CT detection in goaf curtain grouting engineering[J]. Coal Science and Technology,2020,48(Sup.2):98−103.

[90] 崔竹刚. 地震波CT技术在高铁岩溶勘察中的应用[J]. 铁道勘察,2023,49(1):53−57.

CUI Zhugang. Application and research of seismic wave CT technology in karst exploration of high–speed railway[J]. Railway Investigation and Surveying,2023,49(1):53−57.

[91] 扈本娜. 弹性波CT在混凝土防渗墙无损检测中的应用[J]. 水科学与工程技术,2021(6):80−83.

HU Benna. Application of elastic wave CT in nondestructive testing of concrete cutoff wall[J]. Water Sciences and Engineering Technology,2021(6):80−83.

[92] 汪兴旺,杨勤海,孙党生,等. 岩溶探测中井间地震波层析成像的应用[J]. 物探与化探,2008,32(1):105−108.

WANG Xingwang,YANG Qinhai,SUN Dangsheng,et al. The application of well seismic wave tomographic imaging technique to karst survey[J]. Geophysical and Geochemical Exploration,2008,32(1):105−108.

[93] 高星. 地震层析成像研究的回顾与展望[J]. 地球物理学进展,2000,15(4):41−45.

GAO Xing. Advance and review in seismic tomography research[J]. Progress in Geophysics,2000,15(4):41−45.

[94] 赵武阳. 跨孔地震波层析成像在岩溶探测中的应用研究[D]. 桂林:桂林理工大学,2021:20–75.

ZHAO Wuyang. Application of cross–hole seismic tomography in karst exploration[D]. Guilin:Guilin University of Technology,2021:20–75.

[95] 喻波. 拟三维跨孔地震波CT技术在桥梁桩基础岩溶勘察中的应用[J]. 工程地球物理学报,2023,20(4):491−499.

YU Bo. Application of quasi–three–dimensional cross–hole seismic–wave tomography in karst investigation of bridge pile foundation[J]. Chinese Journal of Engineering Geophysics,2023,20(4):491−499.

[96] 王世睿. 隧道掌子面–钻孔瞬变电磁超前探测方法与试验研究[D]. 济南:山东大学,2016.

WANG Shirui. Research on tunnel face–borehole transient electromagnetic method and experiment for advanced detection[D]. Jinan:Shandong University,2016.

[97] 邢涛,牛云飞,孙文斌,等. 三维RVSP技术在复杂地表条件矿井中的应用[J]. 华北地震科学,2020,38(增刊1):1−9.

XING Tao,NIU Yunfei,SUN Wenbin,et al. Application of 3D RVSP technology in mines with complex surface conditions[J]. North China Earthquake Sciences,2020,38(Sup.1):1−9.

[98] 李红立,潘冬明,徐红利. 井地地震CT技术及其应用[J]. 煤田地质与勘探,2008,36(3):71−74.

LI Hongli,PAN Dongming,XU Hongli. Well–ground seismic CT technology and its application[J]. Coal Geology & Exploration,2008,36(3):71−74.

[99] 胡明顺,潘冬明,李兵,等. 井地地震CT成像数值模拟研究与应用[J]. 地球物理学进展,2009,24(4):1399−1404.

HU Mingshun,PAN Dongming,LI Bing,et al. Study of numerical simulation and application on well–ground seismic tomography[J]. Progress in Geophysics,2009,24(4):1399−1404.

[100] 郭建. VSP技术应用现状及发展趋势[J]. 勘探地球物理进展,2004,27(1):1−8.

GUO Jian. The application status and development trends of VSP technology[J]. Progress in Exploration Geophysics,2004,27(1):1−8.

[101] 朱光明. 垂直地震剖面法从苏联到欧美的发展[J]. 西安地质学院学报,1983,5(2):94−112.

[102] 蒋士钧. 垂直地震剖面法简介[J]. 煤田地质与勘探,1985,13(4):30−36.

[103] CHEN S T,ZIMMERMAN L J,TUGNAIT J K. Subsurface imaging using reversed vertical seismic profiling and crosshole tomographic methods[J]. Geophysics,1990,55(11):1478−1487.

[104] 吴律,朱光明,张志禹. Born近似层析与Rytov近似层析对比研究[J]. 石油地球物理勘探,1993,28(1):1−16.

WU Lyu,ZHU Guangming,ZHANG Zhiyu. Comparison between Born’s approximate tomography and Rytov’s approximate tomography[J]. Oil Geophysical Prospecting,1993,28(1):1−16.

[105] 吴律,李秀渊,TEKSÖZ M N. 有限观测角层析研究[J]. 石油物探,1992,31(3):66−75.

WU Lyu,LI Xiuyuan,TEKSÖZ M N. A study on tomography with limited observing apertures[J]. Geophysical Prospecting for Petroleum,1992,31(3):66−75.

[106] 方家福. RVSP简介[J]. 地震学刊,1994(2):61.

[107] 张绍槐,韩继勇,朱根法. 随钻地震技术的理论及工程应用[J]. 石油学报,1999,20(2):67−72.

ZHANG Shaohuai,HAN Jiyong,ZHU Genfa. The engineering application and theory of seismic while drilling[J]. Acta Petrolei Sinica,1999,20(2):67−72.

[108] 唐德林,马文琪,胡宗正,等. 被动震源进行地震勘探的可行性研究[J]. 中国煤炭地质,2008,20(2):46−48.

TANG Delin,MA Wenqi,HU Zongzheng,et al. Feasibility study of seismic prospecting carried out through passive sources[J]. Coal Geology of China,2008,20(2):46−48.

[109] 张道纲. 充电法探测积水老窑的方法和效果[J]. 煤田地质与勘探,1979,7(3):72−76.

[110] 洪树琪. 充电法异常推断解释的一个实例[J]. 地质与勘探,1980,16(1):48−50.

[111] 何裕盛. 地下动态导体充电法高精度定量解释[J]. 物探与化探,2001,25(3):215−223.

HE Yusheng. The high–precision quantitative interpretation of “Mise–A–La–Masse” method for the underground dynamic conductor[J]. Geophysical and Geochemical Exploration,2001,25(3):215−223.

[112] 丁云河,晁代超,王改成. 充电法在确定煤矿区涌水巷道位置中的应用[J]. 河北煤炭,2002(4):51−52.

DING Yunhe,CHAO Daichao,WANG Gaicheng. Application of charge method in determining location of water–yielding roadway[J]. Hebei Coal,2002(4):51−52.

[113] 何展翔,刘雪军,裘尉庭,等. 大功率井–地电法油藏边界预测技术及效果[J]. 石油勘探与开发,2004,31(5):74−76.

HE Zhanxiang,LIU Xuejun,QIU Weiting,et al. High–power surface–borehole electrical method in predicting reservoir boundary and its application[J]. Petroleum Exploration and Development,2004,31(5):74−76.

[114] 董经利,许孝凯,张晋言,等. 声波远探测技术概述及发展[J]. 地球物理学进展,2020,35(2):566−572.

DONG Jingli,XU Xiaokai,ZHANG Jinyan,et al. Overview and development of acoustic far detection technology[J]. Progress in Geophysics,2020,35(2):566−572.

[115] 魏周拓,唐晓明,陈雪莲. 井中偶极声源激励下的反射声场影响因素分析及仪器关键参数优选[J]. 中国石油大学学报(自然科学版),2013,37(6):52−58.

WEI Zhoutuo,TANG Xiaoming,CHEN Xuelian. Influencing factors analysis and remote acoustic sensing instrument preferences optimization on reflected shear–wave of fluid–filled borehole dipole excitation[J]. Journal of China University of Petroleum (Edition of Natural Science),2013,37(6):52−58.

[116] 曹景记,唐晓明,魏周拓. 偶极声源在裸眼井及套管井外的横波辐射特征[J]. 地球物理学报,2014,57(5):1683−1692.

CAO Jingji,TANG Xiaoming,WEI Zhoutuo. Radiation of an acoustic dipole source in open and cased borehole with application to single–well shear–wave imaging[J]. Chinese Journal of Geophysics,2014,57(5):1683−1692.

[117] 李宁,刘鹏,武宏亮,等. 远探测声波测井处理解释方法发展与展望[J]. 石油勘探与开发,2024,51(4):731−742.

LI Ning,LIU Peng,WU Hongliang,et al. Development and prospect of acoustic reflection imaging logging processing and interpretation method[J]. Petroleum Exploration and Development,2024,51(4):731−742.

[118] 唐晓明,魏周拓,苏远大,等. 偶极横波远探测测井技术进展及其应用[J]. 测井技术,2013,37(4):333−340.

TANG Xiaoming,WEI Zhoutuo,SU Yuanda,et al. A review on the progress and application of dipole acoustic reflection imaging technology[J]. Well Logging Technology,2013,37(4):333−340.

[119] 惠伟,黄建军,程培涛,等. 过钻头测井技术在油气田勘探开发中的应用[J]. 海洋石油,2024,44(4):57−61.

HUI Wei,HUANG Jianjun,CHENG Peitao,et al. Application of over bit logging technology in oil and gas field exploration and development[J]. Offshore Oil,2024,44(4):57−61.

[120] 董书宁,李智,郑士田,等. 煤层底板导水通道钻孔超前探查与多元信息识别技术[J]. 煤炭科学技术,2023,51(7):15−23.

DONG Shuning,LI Zhi,ZHENG Shitian,et al. Advanced drilling detection and multi–information identification of water–conducting channel of coal floor[J]. Coal Science and Technology,2023,51(7):15−23.

[121] 郑士田,马荷雯,姬亚东. 煤层底板水害区域超前治理技术优化及其应用[J]. 煤田地质与勘探,2021,49(5):167−173.

ZHENG Shitian,MA Hewen,JI Yadong. Optimization of regional advanced coal floor water hazard prevention and control technology and its application[J]. Coal Geology & Exploration,2021,49(5):167−173.

[122] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256−2264.

JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256−2264.

[123] 程建远,王会林. 煤矿地质保障技术现状与智能探测前景展望[J]. 智能矿山,2020,1(1):35−45.

[124] 张平松,刘畅. 煤系典型岩石受载全过程光–电–声波多参数响应特征[J]. 煤田地质与勘探,2025,53(1):204−214.

ZHANG Pingsong,LIU Chang. Optical–electrical–acoustic wave multiparameter response characteristics of typical rocks in coal–bearing strata throughout the loading process[J]. Coal Geology & Exploration,2025,53(1):204−214.

[125] 柴敬,周余,欧阳一博,等. 基于光纤监测的注浆浆液扩散范围试验研究[J]. 中国矿业大学学报,2022,51(6):1045−1055.

CHAI Jing,ZHOU Yu,OUYANG Yibo,et al. Experimental study of diffusion range of grouting slurry based on optical fiber monitoring[J]. Journal of China University of Mining & Technology,2022,51(6):1045−1055.

[126] 程建远,王保利,范涛,等. 煤矿地质透明化典型应用场景及关键技术[J]. 煤炭科学技术,2022,50(7):1−12.

CHENG Jianyuan,WANG Baoli,FAN Tao,et al. Typical application scenes and key technologies of coal mine geological transparency[J]. Coal Science and Technology,2022,50(7):1−12.

[127] 王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12−26.

WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12−26.

[128] 王双明,耿济世,李鹏飞,等. 煤炭绿色开发地质保障体系的构建[J]. 煤田地质与勘探,2023,51(1):33−43.

WANG Shuangming,GENG Jishi,LI Pengfei,et al. Construction of geological guarantee system for green coal mining[J]. Coal Geology & Exploration,2023,51(1):33−43.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.