•  
  •  
 

Coal Geology & Exploration

Abstract

Objective Deep coalbed methane (CBM) has emerged as a hot topic in CBM resource development. However, deep CBM has characteristics such as great burial depths, complex stress environments, and strong reservoir heterogeneity, which seriously restrict sweet spot prediction and accurate well location deployment in its large-scale exploitation. Methods This study investigated a deep CBM field along the eastern margin of the Ordos Basin. Using sonic, density, and caliper logging, this study developed a coal structure index model for deep coals. By introducing the coal structure index based on the coal structure differences in deep coal seams and combining factors including overburden formation pressure, tectonic stress, and pore pressure, this study established an adaptive horizontal in-situ stress difference model for deep coal seams. Based on the rock strength parameter, the enlargement rate of wellbore diameter, and the fracture toughness of rocks, a natural fissure index model was constructed. By integrating these three models, as well as the six indices of geological and engineering sweet spots, this study developed an intelligent prediction model of geological and engineering integrated sweet spots of deep CBM using support vector machine (SVM). Results The results indicate that the intelligent prediction model of geological and engineering integrated sweet spots yielded a prediction accuracy of 88.2%. Classes I, II, and III sweet spots were identified in the study area, with areas of 117.4 km2 (14.0%), 258.4 km2 (30.8%), and 463.1 km2 (55.2%), respectively, and average predicted production of 6478.6 m3/d, 5076.7 m3/d, and 4022 m3/d, respectively. Conclusions Based on the results of this study, it is recommended to focus on Class I sweet spots, actively explore Class II sweet spots, and proactively avoid Class III sweet spots in the well location deployment for deep CBM in the study area. The fine-scale prediction of geological and engineering integrated sweet spots can provide valuable guidance for reserve growth and production addition of deep CBM along the eastern margin of the Ordos Basin.

Keywords

deep coalbed methane (CBM), geology-engineering integration, sweet spot, vitrinite reflectance, coal structure, natural fracture index, in-situ stress difference

DOI

10.12363/issn.1001-1986.24.11.0727

Reference

[1] LI Song,QIN Yong,TANG Dazhen,et al. A comprehensive review of deep coalbed methane and recent developments in China[J]. International Journal of Coal Geology,2023,279:104369.

[2] 郑司建,桑树勋. 煤层气勘探开发研究进展与发展趋势[J]. 石油物探,2022,61(6):951−962.

ZHENG Sijian,SANG Shuxun. Progress of research on coalbed methane exploration and development[J]. Geophysical Prospecting for Petroleum,2022,61(6):951−962.

[3] 黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.

HUANG Zhongwei,LI Guofu,YANG Ruiyue,et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.

[4] 吴裕根,门相勇,娄钰. 我国“十四五”煤层气勘探开发新进展与前景展望[J]. 中国石油勘探,2024,29(1):1−13.

WU Yugen,MEN Xiangyong,LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five–Year Plan period[J]. China Petroleum Exploration,2024,29(1):1−13.

[5] 周德华,陈刚,陈贞龙,等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业,2022,42(6):43−51.

ZHOU Dehua,CHEN Gang,CHEN Zhenlong,et al. Exploration and development progress,key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry,2022,42(6):43−51.

[6] 牛小兵,赵伟波,史云鹤,等. 鄂尔多斯盆地本溪组天然气成藏条件及勘探潜力[J]. 石油学报,2023,44(8):1240−1257.

NIU Xiaobing,ZHAO Weibo,SHI Yunhe,et al. Natural gas accumulation conditions and exploration potential of Benxi Formation in Ordos Basin[J]. Acta Petrolei Sinica,2023,44(8):1240−1257.

[7] 周立宏,陈长伟,崔宇,等. 渤海湾盆地黄骅坳陷油气勘探新领域、新类型及资源潜力[J]. 石油学报,2023,44(12):2160−2178.

ZHOU Lihong,CHEN Changwei,CUI Yu,et al. New fields,new types and resource potentials of oil–gas exploration in Huanghua depression of Bohai Bay Basin[J]. Acta Petrolei Sinica,2023,44(12):2160−2178.

[8] 申建. 我国主要盆地深部煤层气资源量预测[R]. 徐州:中国矿业大学,2021.

[9] 秦勇,申建,李小刚. 中国煤层气资源控制程度及可靠性分析[J]. 天然气工业,2022,42(6):19−32.

QIN Yong,SHEN Jian,LI Xiaogang. Control degree and reliability of CBM resources in China[J]. Natural Gas Industry,2022,42(6):19−32.

[10] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.

ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.

[11] 聂志宏,时小松,孙伟,等. 大宁–吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200.

NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning–Jixian block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200.

[12] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130.

XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130.

[13] 张宇,赵培荣,刘士林,等. 中国石化“十四五”主要勘探进展与发展战略[J]. 中国石油勘探,2024,29(1):14−31.

ZHANG Yu,ZHAO Peirong,LIU Shilin,et al. Main exploration progress and development strategy of Sinopec during the 14th Five–Year Plan period[J]. China Petroleum Exploration,2024,29(1):14−31.

[14] 桑树勋,李瑞明,刘世奇,等. 新疆煤层气大规模高效勘探开发关键技术领域研究进展与突破方向[J]. 煤炭学报,2024,49(1):563−585.

SANG Shuxun,LI Ruiming,LIU Shiqi,et al. Research progress and breakthrough directions of the key technical fields for large scale and efficient exploration and development of coalbed methane in Xinjiang[J]. Journal of China Coal Society,2024,49(1):563−585.

[15] 秦勇. 中国深部煤层气地质研究进展[J]. 石油学报,2023,44(11):1791−1811.

QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica,2023,44(11):1791−1811.

[16] 刘高峰,刘欢,鲜保安,等. 煤层气开发地质“甜点区”模糊模式识别模型[J]. 石油勘探与开发,2023,50(4):808−815.

LIU Gaofeng,LIU Huan,XIAN Baoan,et al. Fuzzy pattern recognition model of geological sweetspot for coalbed methane development[J]. Petroleum Exploration and Development,2023,50(4):808−815.

[17] 李伟,申建,李超,等. 沁水盆地榆社–武乡区块深部煤层气赋存条件及开发甜点预测[J]. 大庆石油地质与开发,2023,42(4):9−19.

LI Wei,SHEN Jian,LI Chao,et al. Occurrence conditions and development sweet spots prediction of deep coalbed methane in Yushe–Wuxiang block of Qinshui Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2023,42(4):9−19.

[18] 姚红生,房大志,包凯,等. 渝东南地区龙潭组煤层气甜点地质评价及有效压裂工艺[J]. 煤炭科学技术,2023,51(增刊2):132−140.

YAO Hongsheng,FANG Dazhi,BAO Kai,et al. Geological evaluation and effective fracturing technology of Longtan Formation CBM in Nanchuan block,southeast Chongqing,China[J]. Coal Science and Technology,2023,51(Sup.2):132−140.

[19] 徐凤银,聂志宏,孙伟,等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报,2024,49(1):528−544.

XU Fengyin,NIE Zhihong,SUN Wei,et al. Theoretical and technological system for highly efficient development of deep coalbed methane in the eastern edge of Erdos Basin[J]. Journal of China Coal Society,2024,49(1):528−544.

[20] 刘翰林,邹才能,尹帅,等. 中国煤系气形成分布、甜点评价与展望[J]. 天然气工业,2024,44(10):1−21.

LIU Hanlin,ZOU Caineng,YIN Shuai,et al. Formation,distribution,sweet spot evaluation and development prospect of coal–measure gas in China[J]. Natural Gas Industry,2024,44(10):1−21.

[21] 王成旺,刘新伟,李曙光,等. 大宁–吉县区块深部煤层气富集主控因素分析及地质工程甜点区评价[J]. 西安石油大学学报(自然科学版),2024,39(4):1−9.

WANG Chengwang,LIU Xinwei,LI Shuguang,et al. Analysis of main controlling factors of deep coalbed methane enrichment and evaluation of geological and engineering sweet areas in Daning–Jixian block[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2024,39(4):1−9.

[22] 闫霞,熊先钺,李曙光,等. 深层煤岩气水平井各段产出贡献及其主控因素:以鄂尔多斯盆地东缘大宁–吉县区块为例[J]. 天然气工业,2024,44(10):80−92.

YAN Xia,XIONG Xianyue,LI Shuguang,et al. Production contributions of deep CBM horizontal well sections and their controlling factors:A case study of Daning–Jixian area,eastern Ordos Basin[J]. Natural Gas Industry,2024,44(10):80−92.

[23] 李新宁,马东民,陈跃,等. 三塘湖盆地条湖–马朗凹陷煤层气甜点预测[J]. 煤炭技术,2024,43(4):109−113.

LI Xinning,MA Dongmin,CHEN Yue,et al. Sweet spot prediction of coalbed methane in Tiaohu–Malang depression,Santanghu Basin[J]. Coal Technology,2024,43(4):109−113.

[24] 桑树勋,郑司建,王建国,等. 岩石力学地层新方法在深部煤层气勘探开发“甜点”预测中的应用[J]. 石油学报,2023,44(11):1840−1853.

SANG Shuxun,ZHENG Sijian,WANG Jianguo,et al. Application of new rock mechanical stratigraphy in sweet spot prediction for deep coalbed methane exploration and development[J]. Acta Petrolei Sinica,2023,44(11):1840−1853.

[25] 龚斌,王虹雅,王红娜,等. 基于大数据分析算法的深部煤层气地质–工程一体化智能决策技术[J]. 石油学报,2023,44(11):1949−1958.

GONG Bin,WANG Hongya,WANG Hongna,et al. Integrated intelligent decision–making technology for deep coalbed methane geology and engineering based on big data analysis algorithms[J]. Acta Petrolei Sinica,2023,44(11):1949−1958.

[26] 李松林,李忠城,王利娜,等. 寿阳区块高阶煤煤体结构及破裂压力测井解释方法[J]. 煤田地质与勘探,2020,48(6):146−154.

LI Songlin,LI Zhongcheng,WANG Lina,et al. High rank coal structure and log interpretation method of fracture pressure in Shouyang block[J]. Coal Geology & Exploration,2020,48(6):146−154.

[27] 石玉江,何羽飞,万金彬,等. 深层煤岩气地质品质及含气量测井评价方法研究[J]. 中国石油勘探,2024,29(4):126−141.

SHI Yujian,HE Yufei,WAN Jinbin,et al. Research on logging evaluation methods for geological quality and gas contentof deep coal measure gas[J]. China Petroleum Exploration,2024,29(4):126−141.

[28] RICKMAN R,MULLEN M,PETRE E,et al. A practical use of shale petrophysics for stimulation design optimization:All shale plays are not clones of the Barnett shale[C]//SPE Annual Technical Conference and Exhibition. Denver:SPE,2008:SPE–115258–MS.

[29] GRIESER B,BRAY J. Identification of production potential in unconventional reservoirs[C]//Production and Operations Symposium. Oklahoma City:SPE,2007:SPE–106623–MS.

[30] 邓金根,陈峥嵘,耿亚楠,等. 页岩储层地应力预测模型的建立和求解[J]. 中国石油大学学报(自然科学版),2013,37(6):59−64.

DENG Jingen,CHEN Zhengrong,GENG Yanan,et al. Prediction model for in–situ formation stress in shale reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science),2013,37(6):59−64.

[31] 陈峥嵘,刘书杰,曹砚锋,等. 沁水盆地煤层地应力模型及压裂裂缝形态预测方法[J]. 中国海上油气,2018,30(4):163−169.

CHEN Zhengrong,LIU Shujie,CAO Yanfeng,et al. Methods to predict in–situ stress and fracture geometry of coal beds in Qinshui Basin[J]. China Offshore Oil and Gas,2018,30(4):163−169.

[32] CHEN Zhengrong,SUN Tengfei. Evaluation method of coal–bed methane fracturing in the Qinshui Basin[J]. Mathematical Problems in Engineering,2020,2020(1):1545729.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.