Coal Geology & Exploration
Abstract
Objective In China, the Ordos Basin boasts abundant coal-measure gas resources, holding considerable potential for resource development. As the development deepens, the proportion of depleted, stripper, and inefficient wells for tight-sand gas in coal measures has gradually decreased year by year. The collaborative production of tight-sand gas and deep coalbed methane (CBM) has emerged as a significant approach to effectively releasing production capacity.Methods To achieve the reconstruction of old wellbores and commingled production of new and old layers, this study proposed a technology of chemical temporary plugging-based full-bore reconstruction of old wellbores of tight-sand gas combined with the large-scale production of deep CBM. Specifically, a chemical temporary plugging material system was developed based on the concept of dynamic chemical temporary plugging through large-particle bridging, medium-particle filling, and adaptive powder plugging. In combination with the fractal theory and the plugging layer instability criterion, this study constructed a multi-purpose calculation model for the permeability and strength of plugging layers. Accordingly, it proposed an optimized ratio of particle sizes 3‒4 mm, 1‒2 mm, and 0.15 mm at 1:2:4 to plug low-productivity and inefficient old layers. This created favorable conditions for the fracturing and stimulation of deep coal seams. The proposed technology was applied to the field test conducted in the Linxing-Shenfu Block in the Ordos Basin, validating the rationality and feasibility of the proposed wellbore reconstruction technology and composite temporary plugging material system. Results and Conclusions Field implementation of the optimized composite temporary plugging agent achieved full-bore wellbore reconstruction based on chemical temporary plugging, effectively plugging the stimulated reservoirs in the old well, with the pressure born by the plugging layer exceeding 60 MPa. The fracturing process using smooth casings, integrated variable-viscosity slickwater, and temporary plugging knots was employed to stimulate the deep coal seams. The pressure was maintained stable in the proppant injection stage, with no leakage sites or fracturing liquid division observed. Therefore, large-scale volume fracturing of the deep coal seams lying below the tight-sand gas layer was successfully achieved. The results of this study are expected to provide technical support for both the succeeding production of tight-sand gas pay zones in old wells and the collaborative production of tight-sand gas and CBM.
Keywords
deep coalbed methane (CBM), tight-sand gas well, chemical temporary plugging agent, particle size distribution, wellbore reconstruction, collaborative production
DOI
10.12363/issn.1001-1986.24.12.0775
Recommended Citation
YANG Fan, TAN Zhanglong, HU Jiachen,
et al.
(2025)
"Chemical temporary plugging-based full-bore reconstruction technology for old wellbores for the collaborative production of tight-sand gas and deep coalbed methane,"
Coal Geology & Exploration: Vol. 53:
Iss.
6, Article 15.
DOI: 10.12363/issn.1001-1986.24.12.0775
Available at:
https://cge.researchcommons.org/journal/vol53/iss6/15
Reference
[1] 桑树勋,郑司建,刘世奇,等. 煤系气及深部煤层气高效勘探开发若干研究进展[J]. 中国矿业大学学报,2025,54(1):1−25.
SANG Shuxun,ZHENG Sijian,LIU Shiqi,et al. Research advances in efficient exploration and development of coal measure gases and deep coalbed methane[J]. Journal of China University of Mining & Technology,2025,54(1):1−25.
[2] 黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.
HUANG Zhongwei,LI Guofu,YANG Ruiyue,et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.
[3] 刘翰林,邹才能,尹帅,等. 中国煤系气形成分布、甜点评价与展望[J]. 天然气工业,2024,44(10):1−21.
LIU Hanlin,ZOU Caineng,YIN Shuai,et al. Formation,distribution,sweet spot evaluation and development prospect of coal–measure gas in China[J]. Natural Gas Industry,2024,44(10):1−21.
[4] 毕彩芹,胡志方,汤达祯,等. 煤系气研究进展与待解决的重要科学问题[J]. 中国地质,2021,48(2):402−423.
BI Caiqin,HU Zhifang,TANG Dazhen,et al. Research progress of coal measure gas and some important scientific problems[J]. Geology in China,2021,48(2):402−423.
[5] 杨宗楠,孙长彦,范毅刚,等. 煤系气联合开发甜层评价方法研究[J]. 煤矿安全,2023,54(1):62−69.
YANG Zongnan,SUN Changyan,FAN Yigang,et al. Study on sweet layers evaluation method for coal measures gas joint development[J]. Safety in Coal Mines,2023,54(1):62−69.
[6] 徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682.
XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682.
[7] 丛日超,杨睿月,胡家晨,等. 鄂尔多斯盆地东缘下石盒子组砂–泥薄互层岩石力学特性[J]. 煤炭学报,2025,50(3):1668−1682.
CONG Richao,YANG Ruiyue,HU Jiachen,et al. Mechanical properties of thinly interbedded sandstone–mudstone rocks in Lower Shihezi Formation from eastern Ordos Basin[J]. Journal of China Coal Society,2025,50(3):1668−1682.
[8] 李伟,申建,汪跃跃,等. 深部煤系气合采产层组合判识方法及效果评价[J]. 石油学报,2024,45(5):844−854.
LI Wei,SHEN Jian,WANG Yueyue,et al. Identification method of deep coal–measure gas co–production layer combinations and its effect evaluation[J]. Acta Petrolei Sinica,2024,45(5):844−854.
[9] 安琦,杨帆,杨睿月,等. 鄂尔多斯盆地神府区块深部煤层气体积压裂实践与认识[J]. 煤炭学报,2024,49(5):2376−2393.
AN Qi,YANG Fan,YANG Ruiyue,et al. Practice and understanding of deep coalbed methane massive hydraulic fracturing in Shenfu block,Ordos Basin[J]. Journal of China Coal Society,2024,49(5):2376−2393.
[10] 农工界别小组. 加强煤系气开发 助力“双碳”目标实现[J]. 前进论坛,2023(2):35.
[11] 李若宸. 油田低效井综合治理技术探讨[J]. 化学工程与装备,2024(6):72−74.
[12] 徐兵祥,白玉湖,陈岭,等. 致密气–煤层气合采可行性分析及优选方法[J]. 天然气技术与经济,2021,15(1):38−44.
XU Bingxiang,BAI Yuhu,CHEN Ling,et al. Feasibility analysis on coproduction between tight gas and CBM and optimizing method[J]. Natural Gas Technology and Economy,2021,15(1):38−44.
[13] 王伟,魏振吉,季亮,等. 韩城区块煤层气井顶板控底重复压裂技术研究与应用[J]. 中国科技论文,2024,19(1):33−42.
WANG Wei,WEI Zhenji,JI Liang,et al. Research and application of roof refracturing technology for controlled bottom seam height of coalbed methane well in Hancheng block[J]. China Sciencepaper,2024,19(1):33−42.
[14] 齐月魁,刘言理,张高峰,等. 井筒重构关键技术研究[Z]. 2021.
[15] 张建兵. 油气井膨胀管技术机理研究[D]. 成都:西南石油学院,2003.
[16] 文洋. 套管补贴技术相关应用[J]. 模具制造,2025,25(2):145−147.
WEN Yang. Application of casing subsidy technology[J]. Die & Mould Manufacture,2025,25(2):145−147.
[17] REN Zhaokun,SUN Yulai,LI Qiongwei,et al. Manufacture and investigation on the shape memory polymer composite subsidy pipe[J]. Composite Structures,2021,274:114331.
[18] 曹成章,步玉环,田磊聚,等. 可固化树脂基固井材料及其固化剂的优选[J]. 钻井液与完井液,2020,37(4):498−506.
CAO Chengzhang,BU Yuhuan,TIAN Leiju,et al. Selection of curable resin based cementing material and the curing agent thereof[J]. Drilling Fluid & Completion Fluid,2020,37(4):498−506.
[19] 刘凡,刘钦政,郝惠军,等. 高强度可固化树脂堵漏剂PMMM研制与评价[J]. 钻井液与完井液,2021,38(6):671−676.
LIU Fan,LIU Qinzheng,HAO Huijun,et al. Synthesis and evaluation of a high strength curable resin LCM PMMM[J]. Drilling Fluid & Completion Fluid,2021,38(6):671−676.
[20] 李少波,王浩天,欧阳邵立,等. 油井用化学暂堵剂的研究进展综述[J]. 化纤与纺织技术,2021,50(3):50−51.
[21] LYU Kun,ZHU Qi,YIN Hongyao,et al. Slow curing of epoxy resin underwater at high temperatures[J]. Industrial & Engineering Chemistry Research,2022,61(46):16935−16945.
[22] ZHAO Liqiang,CHEN Xiang,ZOU Honglan,et al. A review of diverting agents for reservoir stimulation[J]. Journal of Petroleum Science and Engineering,2020,187:106734.
[23] 刘金栋,蒋建方,褚占宇,等. 转向压裂暂堵剂的研究与应用进展[J]. 精细石油化工,2024,41(1):72−76.
LIU Jindong,JIANG Jianfang,CHU Zhanyu,et al. Review on research and application of temporary plugging agents for diversion fracturing[J]. Speciality Petrochemicals,2024,41(1):72−76.
[24] 穆蒙,唐绪涛,汪庐山,等. 化学暂堵体系的构建、性能及应用研究进展[J]. 油田化学,2022,39(4):735−744.
MU Meng,TANG Xutao,WANG Lushan,et al. Progress of fabrications,properties and applications of chemical temporary plugging systems[J]. Oilfield Chemistry,2022,39(4):735−744.
[25] 李伟,肖阳,陈明鑫,等. 深井转向压裂暂堵剂研究及应用[J]. 特种油气藏,2022,29(1):154−159.
LI Wei,XIAO Yang,CHEN Mingxin,et al. Study and application of temporary plugging agent for turnaround fracturing in deep well[J]. Special Oil & Gas Reservoirs,2022,29(1):154−159.
[26] YANG Chen,ZHOU Fujian,FENG Wei,et al. Plugging mechanism of fibers and particulates in hydraulic fracture[J]. Journal of Petroleum Science and Engineering,2019,176:396−402.
[27] 曾凡辉,胡大淦,张宇,等. 多尺度暂堵剂粒度参数优化及应用[J]. 大庆石油地质与开发,2023,42(5):57−66.
ZENG Fanhui,HU Dagan,ZHANG Yu,et al. Optimization and application of particle parameters of multi–scale temporary plugging agent[J]. Petroleum Geology & Oilfield Development in Daqing,2023,42(5):57−66.
[28] ALSABA M,AL DUSHAISHI M F,NYGAARD R,et al. Updated criterion to select particle size distribution of lost circulation materials for an effective fracture sealing[J]. Journal of Petroleum Science and Engineering,2017,149:641−648.
[29] KAEUFFER J L. Determination de L’optimum de remplissage granulometrique et quelques proprietes S’Y rattachant[J]. Dble Liaison,1975,22(239/240):23−28.
[30] XU Chengyuan,KANG Yili,YOU Lijun,et al. Lost–circulation control for formation–damage prevention in naturally fractured reservoir:Mathematical model and experimental study[J]. SPE Journal,2017,22(5):1654−1670.
[31] 席胜利,闫伟,刘新社,等. 鄂尔多斯盆地天然气勘探新领域、新类型及资源潜力[J]. 石油学报,2024,45(1):33−51.
XI Shengli,YAN Wei,LIU Xinshe,et al. New fields,new types and resource potentials of natural gas exploration in Ordos Basin[J]. Acta Petrolei Sinica,2024,45(1):33−51.
[32] 徐长贵,季洪泉,王存武,等. 鄂尔多斯盆地东缘临兴–神府区块深部煤层气富集规律与勘探对策[J]. 煤田地质与勘探,2024,52(8):1−11.
XU Changgui,JI Hongquan,WANG Cunwu,et al. Enrichment patterns and exploration countermeasures of deep coalbed methane in the Linxing–Shenfu block on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2024,52(8):1−11.
[33] 叶建平. 中国煤层气勘探开发及其科技进步历程回顾与思考[J]. 煤田地质与勘探,2025,53(1):114−127.
YE Jianping. China’s CBM exploration and production and associated technological advancements:A review and reflections[J]. Coal Geology & Exploration,2025,53(1):114−127.
[34] 金勇,陈彬,张伟,等. 漏失地层封堵层致密性与承压能力试验研究[J]. 能源化工,2023,44(1):44−47.
JIN Yong,CHEN Bin,ZHANG Wei,et al. Study on tightness and pressure–bearing of sealing layer in lost circulation formation[J]. Energy Chemical Industry,2023,44(1):44−47.
[35] 韩慧芬. 可降解暂堵球动态封堵承压性能评价方法及装置研制[J]. 钻采工艺,2022,45(3):55−60.
HAN Huifen. Evaluation method and device development of dynamic sealing performance of degradable temporary plugging ball[J]. Drilling & Production Technology,2022,45(3):55−60.
[36] 杨帆,李斌,王昆剑,等. 深部煤层气水平井大规模极限体积压裂技术:以鄂尔多斯盆地东缘临兴区块为例[J]. 石油勘探与开发,2024,51(2):389−398.
YANG Fan,LI Bin,WANG Kunjian,et al. Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing block,eastern Ordos Basin,NW China[J]. Petroleum Exploration and Development,2024,51(2):389−398
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons