Coal Geology & Exploration
Abstract
Objective and Methods This study aims to improve the permeability enhancement effect of coal seams for gas drainage. Targeting the soft, low-permeability coal seams with complex gas occurrence conditions in the Baiping mining area and considering the impacts of effective stress, gas migration, actual gas effects, and tortuosity, this study constructed a stress-diffusion-seepage coupling model based on the pore-fracture dual medium assumption. Using the coupling model, this study simulated the variation patterns of gas content in coal seams during gas drainage under varying gas contents and borehole spacings. Through field tests under different permeability enhancement measures and unloaded coal amounts across borehole intervals, this study compared the permeability enhancement effects of hydraulic flushing, hydraulic slotting, and mechanical reaming to determine the optimal permeability enhancement technique.Results and Conclusions The stress-diffusion-seepage coupling model enables accurate characterization of the diffusion behavior and flow paths of gas in coal seams. The coal seam thickness and gas content produce significant impacts on the gas drainage effects, with a thicker coal seam and higher gas content associated with a smaller borehole spacing required to achieve effective gas drainage. Under gas contents of ≤7 m3/t, >7‒8 m3/t, and >8‒9.35 m3/t, borehole spacings sshould not exceed 11 m, 9 m, and 8 m, respectively in the case of coal seam thicknesses ≤1 m, should not exceed 10 m, 9 m, and 7 m, respectively if coal seam thicknesses range from > 1 m to 5 m, and should not exceed 10 m, 8 m, and 7 m, respectively if coal seam thicknesses vary from > 5 m to 9 m. Field tests indicate that hydraulic flushing, hydraulic slotting, and mechanical reaming all reduce the volume fraction of methane in coal seams and increase the effective gas drainage radius. Notably, these effects prove especially significant in the early drainage stage, while gradually tending to be gentle in the later stage. Under the same technical conditions, hydraulic slotting can deliver optimal performance, reducing the volume fraction of methane by 64.74 % and increasing the effective gas drainage radius by 0.35 m after 90 days of gas drainage.
Keywords
coalbed methane (CBM), hydraulic slotting, permeability enhancement measure, stress-diffusion-seepage coupling model, borehole arrangement
DOI
10.12363/issn.1001-1986.25.02.0132
Recommended Citation
ZHANG Hongtu, ZHOU Tian, WANG Dengke,
et al.
(2025)
"Analyzing the permeability enhancement effect of hydraulic slotting for low-permeability coal seams based on a stress-diffusion-seepage coupling model,"
Coal Geology & Exploration: Vol. 53:
Iss.
6, Article 13.
DOI: 10.12363/issn.1001-1986.25.02.0132
Available at:
https://cge.researchcommons.org/journal/vol53/iss6/13
Reference
[1] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6.
YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6.
[2] 林柏泉,张祥良. 低透难抽煤层等离子体致裂增透机制及研究进展[J]. 中国矿业大学学报,2023,52(6):1041−1057.
LIN Baiquan,ZHANG Xiangliang. Mechanism and research progress of plasma induced cracking and enhancement in low permeability and hard to extract coal seams[J]. Journal of China University of Mining & Technology,2023,52(6):1041−1057.
[3] 卢义玉,黄杉,葛兆龙,等. 我国煤矿水射流卸压增透技术进展与战略思考[J]. 煤炭学报,2022,47(9):3189−3211.
LU Yiyu,HUANG Shan,GE Zhaolong,et al. Research progress and strategic thinking of coal mine water jet technology to enhance coal permeability in China[J]. Journal of China Coal Society,2022,47(9):3189−3211.
[4] 林海飞,季鹏飞,孔祥国,等. 我国低渗煤层井下注气驱替增流抽采瓦斯技术进展及前景展望[J]. 煤炭学报,2023,48(2):730−749.
LIN Haifei,JI Pengfei,KONG Xiangguo,et al. Progress and prospect of gas extraction technology by underground gas injection displacement for increasing flow in low–permeability coal seam in China[J]. Journal of China Coal Society,2023,48(2):730−749.
[5] 刘志强,宋朝阳,程守业,等. 我国反井钻机钻井技术与装备发展历程及现状[J]. 煤炭科学技术,2021,49(1):32−65.
LIU Zhiqiang,SONG Zhaoyang,CHENG Shouye,et al. Development history and status quo of raise boring technologies and equipment in China[J]. Coal Science and Technology,2021,49(1):32−65.
[6] 王兆丰,范迎春,李世生. 水力冲孔技术在松软低透突出煤层中的应用[J]. 煤炭科学技术,2012,40(2):52−55.
WANG Zhaofeng,FAN Yingchun,LI Shisheng. Application of borehole hydraulic flushing technology to soft and outburst seam with low permeability[J]. Coal Science and Technology,2012,40(2):52−55.
[7] 刘生龙,朱传杰,林柏泉,等. 水力割缝空间分布模式对煤层卸压增透的作用规律[J]. 采矿与安全工程学报,2020,37(5):983−990.
LIU Shenglong,ZHU Chuanjie,LIN Baiquan,et al. The effect of spatial distribution mode of hydraulic slotting on pressure relief and permeability enhancement of the coal seam[J]. Journal of Mining & Safety Engineering,2020,37(5):983−990.
[8] 唐巨鹏,潘一山,李成全. 低渗透油田水力割缝降低原地应力数值模拟研究[J]. 钻采工艺,2005,28(2):31−34.
TANG Jupeng,PAN Yishan,LI Chengquan. Numerical simulation of hydraulic decreasing seam in low permeability oil field[J]. Drilling & Production Technology,2005,28(2):31−34.
[9] 周雷,彭雨,卢义玉,等. 基于物质点法的深部煤层气水力割缝卸压解吸增透规律数值模拟研究[J]. 煤炭学报,2022,47(9):3298−3309.
ZHOU Lei,PENG Yu,LU Yiyu,et al. Numerical simulation of deep CBM hydraulic slotting pressure relief and desorption and permeability enhancement based on the MPM[J]. Journal of China Coal Society,2022,47(9):3298−3309.
[10] 夏永学,鞠文君,苏士杰,等. 冲击地压煤层水力扩孔掏槽防冲试验研究[J]. 采矿与岩层控制工程学报,2020,2(1):013022.
XIA Yongxue,JU Wenjun,SU Shijie,et al. Experimental study on hydraulic reaming of gutters in coal seam with impact pressure[J]. Journal of Mining and Strata Control Engineering,2020,2(1):013022.
[11] 张杰. 煤矿井下钻孔破碎带水力复合扩孔试验研究[J]. 煤炭科学技术,2021,49(8):162−167.
ZHANG Jie. Experiment study on hydraulic reaming in borehole fracture zone in underground coal mine[J]. Coal Science and Technology,2021,49(8):162−167.
[12] PAN Hui,CHEN Xizhong,LIANG Xiaofei,et al. CFD simulations of gas–liquid–solid flow in fluidized bed reactors:A review[J]. Powder Technology,2016,299:235−258.
[13] 李树刚,赵勇,许满贵. 煤岩与瓦斯固流耦合机理研究进展[J]. 煤矿安全,2015,46(10):186−189.
LI Shugang,ZHAO Yong,XU Mangui. Research development of coal petrography and gas solid flow coupling mechanism[J]. Safety in Coal Mines,2015,46(10):186−189.
[14] 尹光志,李铭辉,李生舟,等. 基于含瓦斯煤岩固气耦合模型的钻孔抽采瓦斯三维数值模拟[J]. 煤炭学报,2013,38(4):535−541.
YIN Guangzhi,LI Minghui,LI Shengzhou,et al. 3D numerical simulation of gas drainage from boreholes based on solid–gas coupling model of coal containing gas[J]. Journal of China Coal Society,2013,38(4):535−541.
[15] 茹忠亮,简阔,马国胜. 考虑Klinkenberg效应的多孔介质气体渗流模型[J]. 中国科技论文,2018,13(3):310−313.
RU Zhongliang,JIAN Kuo,MA Guosheng. The gas seepage model in porous medium considering Klinkenberg effect[J]. China Sciencepaper,2018,13(3):310−313.
[16] 桑树勋,郑司建,王建国,等. 岩石力学地层新方法在深部煤层气勘探开发“甜点”预测中的应用[J]. 石油学报,2023,44(11):1840−1853.
SANG Shuxun,ZHENG Sijian,WANG Jianguo,et al. Application of new rock mechanical stratigraphy in sweet spot prediction for deep coalbed methane exploration and development[J]. Acta Petrolei Sinica,2023,44(11):1840−1853.
[17] 王方田,李哲,张村,等. 高瓦斯煤层大直径钻孔卸压增透瓦斯渗流时空演化机理[J]. 煤炭科学技术,2024,52(增刊1):47−61.
WANG Fangtian,LI Zhe,ZHANG Cun,et al. Temporal and spatial evolution mechanism of large–diameter borehole pressure relief and permeable gas seepage in high gas coal seam[J]. Coal Science and Technology,2024,52(Sup.1):47−61.
[18] 林柏泉,张其智,沈春明,等. 钻孔割缝网络化增透机制及其在底板穿层钻孔瓦斯抽采中的应用[J]. 煤炭学报,2012,37(9):1425−1430.
LIN Baiquan,ZHANG Qizhi,SHEN Chunming,et al. Permeability–increasing mechanism of network slotting boreholes and application in crossing borehole gas drainage[J]. Journal of China Coal Society,2012,37(9):1425−1430.
[19] 康向涛. 煤层水力压裂裂缝扩展规律及瓦斯抽采钻孔优化研究[D]. 重庆:重庆大学,2014.
KANG Xiangtao. Research on hydraulic fracturing propagation rules in coal seam and gas extraction drilling optimization[D]. Chongqing:Chongqing University,2014.
[20] 许江,宋肖徵,彭守建,等. 顺层钻孔布置间距对煤层瓦斯抽采效果影响的物理模拟试验研究[J]. 岩土力学,2019,40(12):4581−4589.
XU Jiang,SONG Xiaozheng,PENG Shoujian,et al. Physical simulation experiment on influence of borehole spacing along the seam on effect of gas drainage[J]. Rock and Soil Mechanics,2019,40(12):4581−4589.
[21] 彭守建,李正一,许江,等. 基于不同钻孔间距的瓦斯抽采效果实验研究[J]. 煤炭工程,2020,52(1):95−99.
PENG Shoujian,LI Zhengyi,XU Jiang,et al. Experimental study on gas extraction effect with different borehole spacing[J]. Coal Engineering,2020,52(1):95−99.
[22] 赵斌,吴玉海,曹民远. 邻近层采动影响区瓦斯预抽钻孔优化布置及效果评价[J]. 煤炭工程,2023,55(5):76−80.
ZHAO Bin,WU Yuhai,CAO Minyuan. Optimum layout and effect evaluation of gas pre–extraction drilling in adjacent seam[J]. Coal Engineering,2023,55(5):76−80.
[23] 刘军,王兆丰,李学臣,等. 消除矿井瓦斯抽采空白带方法的研究[J]. 煤炭科学技术,2012,40(12):59−61.
LIU Jun,WANG Zhaofeng,LI Xuechen,et al. Study on the methods of eliminating blank zone of mine gas drainage[J]. Coal Science and Technology,2012,40(12):59−61.
[24] 于丽雅,张宗良. 高瓦斯厚煤层本煤层预抽钻孔布置优化研究[J]. 煤炭工程,2023,55(7):78−83.
YU Liya,ZHANG Zongliang. Optimization of drilling hole layout mode for high gas thick coal seam[J]. Coal Engineering,2023,55(7):78−83.
[25] LIN Jia,REN Ting,WANG Gongda,et al. Field trials of nitrogen injection enhanced gas drainage in hard–to–drain coal seam by using underground in–seam (UIS) boreholes[J]. Fuel,2022,328:125293.
[26] LIU Zhengdong,CHENG Yuanping,JIANG Jingyu,et al. Interactions between coal seam gas drainage boreholes and the impact of such on borehole patterns[J]. Journal of Natural Gas Science and Engineering,2017,38:597−607.
[27] FAN Zhanglei,FAN Gangwei,ZHANG Dongsheng. Representation of mining permeability and borehole layout optimization for efficient methane drainage[J]. Energy Reports,2021,7:3911−3921.
[28] 王登科,唐家豪,魏建平,等. 煤层瓦斯多机制流固耦合模型与瓦斯抽采数值模拟分析[J]. 煤炭学报,2023,48(2):763−775.
WANG Dengke,TANG Jiahao,WEI Jianping,et al. A fluid–solid coupling model of coal seam gas considering gas multi–mechanism flow and a numerical simulation analysis of gas drainage[J]. Journal of China Coal Society,2023,48(2):763−775.
[29] 陈勉,陈至达. 多重孔隙介质的有效应力定律[J]. 应用数学和力学,1999,20(11):1121−1127.
CHEN Mian,CHEN Zhida. Effective stress laws for multi–porosity media[J]. Applied Mathematics and Mechanics,1999,20(11):1121−1127.
[30] LI Sheng,FAN Chaojun,HAN Jun,et al. A fully coupled thermal–hydraulic–mechanical model with two–phase flow for coalbed methane extraction[J]. Journal of Natural Gas Science and Engineering,2016,33:324−336.
[31] 孟然. 软煤体孔隙结构及其瓦斯吸附特性研究[D]. 西安:西安科技大学,2016.
MENG Ran. Research on the pore structure of soft coal and its adsorption characteristics to CH4[D]. Xi’an:Xi’an University of Science and Technology,2016.
[32] 田敬,林晓英,苏现波,等. 软硬煤孔隙结构特征及对变压解吸规律的影响[J]. 煤矿安全,2018,49(12):21−26.
TIAN Jing,LIN Xiaoying,SU Xianbo,et al. Pore structure of soft and hard coal and its influence on gas desorption characteristics under variable pressure[J]. Safety in Coal Mines,2018,49(12):21−26.
[33] FATHI E,AKKUTLU Y. Nonlinear sorption kinetics and surface diffusion effects on gas transport in low–permeability formations[C]//SPE Annual Technical Conference and Exhibition. New Orleans:SPE,2009:SPE–124478–MS.
[34] MORA C A,WATTENBARGER R A. Analysis and verification of dual porosity and CBM shape factors[J]. Journal of Canadian Petroleum Technology,2009,48(2):17−21.
[35] REIF F. Fundamentals of statistical and thermal physics[M]. Long Grove:Waveland Press,2008.
[36] 郭亮,彭晓峰,吴占松. 甲烷在成型纳米活性炭中的吸附动力学特性[J]. 化工学报,2008,59(11):2726−2732.
GUO Liang,PENG Xiaofeng,WU Zhansong. Dynamical characteristics of methane adsorption on monolith nanometer activated carbon[J]. Journal of Chemical Industry and Engineering,2008,59(11):2726−2732.
[37] BESKOK A,KARNIADAKIS G E. Report:A model for flows in channels,pipes,and ducts at micro and nano scales[J]. Microscale Thermophysical Engineering,1999,3(1):43−77.
[38] 王登科,彭明,付启超,等. 瓦斯抽采过程中的煤层透气性动态演化规律与数值模拟[J]. 岩石力学与工程学报,2016,35(4):704−712.
WANG Dengke,PENG Ming,FU Qichao,et al. Evolution and numerical simulation of coal permeability during gas drainage in coal seams[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(4):704−712.
[39] 于庆磊,郑超,杨天鸿,等. 基于细观结构表征的岩石破裂热–力耦合模型及应用[J]. 岩石力学与工程学报,2012,31(1):42−51.
YU Qinglei,ZHENG Chao,YANG Tianhong,et al. Meso–structure characterization based on coupled thermal–mechanical model for rock failure process and applications[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(1):42−51.
[40] LIU Yanwei,JIA Haojie,HAN Hongkai,et al. Research on the gas migration trend and mechanism of the transition flow regime in coal based on MRT–LBM simulation[J]. Frontiers in Earth Science,2022,10:1022845.
[41] 李航. 统计学习方法[M]. 北京:清华大学出版社,2012.
[42] WEI Pan,HUANG Changwen,LI Xuelong,et al. Numerical simulation of boreholes for gas extraction and effective range of gas extraction in soft coal seams[J]. Energy Science & Engineering,2019,7(5):1632−1648.
[43] 唐永志,李平,朱贵旺,等. 超高压水力割缝技术在中等硬度低透气性煤层的应用[J]. 煤炭科学技术,2022,50(12):43−49.
TANG Yongzhi,LI Ping,ZHU Guiwang,et al. Application of ultra–high pressure hydraulic slotting technology in medium hardness and low permeability coal seam[J]. Coal Science and Technology,2022,50(12):43−49.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons