Coal Geology & Exploration
Abstract
Objective Coals serve as both the cornerstone of China’s energy security and important industrial raw materials. However, their mining and utilization tend to cause ecological and environmental problems such as CO2 emissions, the generation of solid wastes, and land subsidence. This necessitates reforming coal mining methods to promote the green, low-carbon, and sustainable development of China’s coal industry.Methods Through the comparative analysis of the conditions of CO2 sequestration in goaves corresponding to the caving, room-and-pillar (also known as knife-pillar), and backfill mining methods, this study developed a synergetic method for backfill-strip mining and CO2 mineralization sequestration in goaves by combining the current status of technologies for geologic CO2 sequestration and coal mine backfill mining. With a typical coal mine in Shaanxi Province as a case study, this study conducted numerical simulation experiments on damage to the overlying low-permeability, thick mudstone layer during backfill-strip mining. Based on the continuous and the foundation beam models, this study established a mechanical model of the cap rocks and a model for the mining-induced fracture heights. Additionally, key technologies for the synergetic method were proposed.Results and Conclusions Goaves formed under the caving and room-and-pillar mining are characterized by poor reservoir and cap rock conditions for CO2 storage, which tend to pose high leakage risks. In contrast, the backfill mining method can effectively protect cap rock integrity. However, it is necessary to reserve storage spaces if this method is applied. The numerical simulation results indicated that the maximum subsidence of the upper boundary of the low-permeability, thick mudstone layer No.3 above the goaf were determined at 1 230 mm, 520 mm, and 105 mm, respectively under backfilling rates of 0, 50%, and 80%. As the backfilling rate increased, the low-permeability, thick mudstone layer exhibited decreased subsidence amplitude and substantially reduced plastic deformation areas. Therefore, the integrity of the cap rocks can be ensured by optimizing the process and parameters of the strip-backfill mining. The mechanical model of a non-horizontal continuous beam with six spans under the condition of three mining-backfilling cycles was established, and the expressions for reaction forces and bending moments at pivot points were derived. Additionally, the model for the mining-induced fracture heights was constructed. To achieve the practical application of the synergetic method, it is necessary to make breakthroughs in key technologies including geological siting, the building and stability-orientated regulation of underground gas storage (UGS) facilities for CO2 sequestration, CO2 mineralization combined with desulfurization/denitrification for backfilling material preparation, and CO2 charging simulation and optimization, followed by the development of comprehensive schemes. This will offer new approaches for the green, low-carbon development of China’s coal industry.
Keywords
coal mine goaf, CO2 mineralization, backfill mining, cap rock, mining-induced fracture
DOI
10.12363/issn.1001-1986.25.02.0109
Recommended Citation
ZHU Mengbo, LIU Lang, WANG Shuangming,
et al.
(2025)
"Backfill-strip mining and CO2 mineralization sequestration in coal mine goaves: A synergetic method and its key technologies,"
Coal Geology & Exploration: Vol. 53:
Iss.
6, Article 12.
DOI: 10.12363/issn.1001-1986.25.02.0109
Available at:
https://cge.researchcommons.org/journal/vol53/iss6/12
Reference
[1] 王双明,申艳军,孙强,等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报,2022,47(1):45−60.
WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Underground CO2 storage and technical problems in coal mining area under the “dual carbon” target[J]. Journal of China Coal Society,2022,47(1):45−60.
[2] 王双明,刘浪,朱梦博,等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报,2024,49(1):152−171.
WANG Shuangming,LIU Lang,ZHU Mengbo,et al. New way for green and low–carbon development of coal industry under the target of “dual–carbon”[J]. Journal of China Coal Society,2024,49(1):152−171.
[3] 郭文兵,杨伟强,吴东涛. 我国煤矿开采沉陷控制技术研究现状与进展[J]. 采矿与岩层控制工程学报,2024,6(6):063542.
GUO Wenbing,YANG Weiqiang,WU Dongtao. Current status and progress of subsidence control technology in China coal mines[J]. Journal of Mining and Strata Control Engineering,2024,6(6):063542.
[4] 王猛,马如英,代旭光,等. 煤矿区碳排放的确认和低碳绿色发展途径研究[J]. 煤田地质与勘探,2021,49(5):63−69.
WANG Meng,MA Ruying,DAI Xuguang,et al. Confirmation of carbon emissions in coal mining areas and research on low–carbon green development path[J]. Coal Geology & Exploration,2021,49(5):63−69.
[5] HOEGH–GULDBERG O,JACOB D,TAYLOR M,et al. The human imperative of stabilizing global climate change at 1.5 ℃[J]. Science,2019,365(6459):eaaw6974.
[6] 朱世良,邵丽伟,周效志,等. 煤基CO2地质封存对顶板裂缝导流能力影响实验研究[J]. 煤田地质与勘探,2021,49(3):128−132.
ZHU Shiliang,SHAO Liwei,ZHOU Xiaozhi,et al. Experimental study on the influence of coal–based CO2 geological storage on roof fracture conductivity[J]. Coal Geology & Exploration,2021,49(3):128−132.
[7] 项目综合报告编写组. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境,2020,30(11):1−25.
[8] 张贤,李阳,马乔,等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学,2021,23(6):70−80.
ZHANG Xian,LI Yang,MA Qiao,et al. Development of carbon capture,utilization and storage technology in China[J]. Strategic Study of CAE,2021,23(6):70−80.
[9] 杨科,张继强,何祥,等. 多源煤基固废胶结充填体力学及变形破坏特征试验研究[J]. 煤田地质与勘探,2024,52(6):102−114.
YANG Ke,ZHANG Jiqiang,HE Xiang,et al. Experimental study on the mechanics and deformation failure characteristics of multi–source coal–based solid waste cemented backfill[J]. Coal Geology & Exploration,2024,52(6):102−114.
[10] 王双明,寇海波,申艳军,等. 含煤岩系CO2突出对浅层CO2地质封存的启示[J]. 绿色矿山,2023,1(1):33−47.
WANG Shuangming,KOU Haibo,SHEN Yanjun,et al. Implications of CO2 outburst from coal–bearing rock series for the CO2 geological sequestration under shallow layers[J]. Journal of Green Mine,2023,1(1):33−47.
[11] 刘世奇,皇凡生,杜瑞斌,等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探,2023,51(2):158−174.
LIU Shiqi,HUANG Fansheng,DU Ruibin,et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J]. Coal Geology & Exploration,2023,51(2):158−174.
[12] 桑树勋,王冉,周效志,等. 论煤地质学与碳中和[J]. 煤田地质与勘探,2021,49(1):1−11.
SANG Shuxun,WANG Ran,ZHOU Xiaozhi,et al. Review on carbon neutralization associated with coal geology[J]. Coal Geology & Exploration,2021,49(1):1−11.
[13] JALILI P,SAYDAM S,CINAR Y. CO2 storage in abandoned coal mines[C]//Proceedings of the 2011 Coal Operators’ Conference. Wollongong,2011:355–360.
[14] PIESSENS K,DUSAR M. Feasibility of CO2 sequestration in abandoned coal mines in Belgium[J]. Geologica Belgica,2004,7(3):165−180.
[15] LUTYŃSKI M. A concept of enhanced methane recovery by high pressure CO2 storage in abandoned coal mine[J]. Gospodarka Surowcami Mineralnymi:Mineral Resources Management,2010,26(1):93−104.
[16] 张毅,秦容军. 神东矿区地下空间评估与利用方向探索[J]. 煤炭科学技术,2022,50(增刊2):196−203.
ZHANG Yi,QIN Rongjun. Exploration on evaluation and utilization direction of underground space in Shendong mining area[J]. Coal Science and Technology,2022,50(Sup.2):196−203.
[17] 谢和平,张吉雄,高峰,等. 煤矿负碳高效充填开采理论与技术构想[J]. 煤炭学报,2024,49(1):36−46.
XIE Heping,ZHANG Jixiong,GAO Feng,et al. Theory and technical conception of carbon–negative and high–efficient backfill mining in coal mines[J]. Journal of China Coal Society,2024,49(1):36−46.
[18] 刘浪,方治余,王双明,等. 煤矿充填固碳理论基础与技术构想[J]. 煤炭科学技术,2024,52(2):292−308.
LIU Lang,FANG Zhiyu,WANG Shuangming,et al. Theoretical basis and technical conception of backfill carbon fixation in coal mine[J]. Coal Science and Technology,2024,52(2):292−308.
[19] 刘浪,王双明,朱梦博,等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报,2022,47(3):1072−1086.
LIU Lang,WANG Shuangming,ZHU Mengbo,et al. CO2 storage–cavern construction and storage method based on functional backfill[J]. Journal of China Coal Society,2022,47(3):1072−1086.
[20] 马立强,翟江涛,ICHHUY N G O. CO2矿化煤基固废制备保水开采负碳充填材料试验研究[J]. 煤炭学报,2022,47(12):4228−4236.
MA Liqiang,ZHAI Jiangtao,ICHHUY N G O. Experimental study on preparation of negative carbon filling material forwater protection mining by CO2 mineralization of coal–based solid waste[J]. Journal of China Coal Society,2022,47(12):4228−4236.
[21] 尹希文,于秋鸽,甘志超,等. 高钙粉煤灰固碳降碱反应特性及煤矿井下规模化利用新途径[J]. 煤炭学报,2023,48(7):2717−2727.
YIN Xiwen,YU Qiuge,GAN Zhichao,et al. Reaction characteristics of carbon fixation and alkali reduction in high calcium fly ash and new way of large–scale utilization in coal mine[J]. Journal of China Coal Society,2023,48(7):2717−2727.
[22] 苏现波,赵伟仲,王乾,等. 煤矿采动影响体微生物采残煤与CO2–粉煤灰协同充填关键技术[J]. 煤炭学报,2024,49(1):400−414.
SU Xianbo,ZHAO Weizhong,WANG Qian,et al. Key technologies of microbial mining residual coal and CO2–fly ash co–filling in the impacted geological body of coal mining[J]. Journal of China Coal Society,2024,49(1):400−414.
[23] 刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15.
LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low–carbon technology path under the dual–carbon background[J]. Journal of China Coal Society,2022,47(1):1−15.
[24] 冯国瑞,白锦文,曹光明,等. 残采区关键域充填储碳空间重构的科学内涵[J]. 中国矿业大学学报,2023,52(3):432−445.
FENG Guorui,BAI Jinwen,CAO Guangming,et al. Scientific connotation on the key location backfilling for carbon storage space reconstruction in the residual mining area[J]. Journal of China University of Mining & Technology,2023,52(3):432−445.
[25] DU Xianjie,FENG Guorui,ZHANG Min,et al. Influence of backfilling rate on the stability of the “backfilling body–immediate roof” cooperative bearing structure[J]. International Journal of Mining Science and Technology,2022,32(6):1197−1206.
[26] LI Huaizhan,HUANG Jianyong,TANG Lu,et al. New model of negative carbon utilization in coal mine goafs and its feasibility and prospects for application[J]. Journal of Cleaner Production,2023,420:138368.
[27] 姚强岭,曹胜根,闫仑,等. 煤矿采动空间CO2地质封存、运移与固化理论和技术框架[J]. 采矿与安全工程学报,2023,40(5):1003−1017.
YAO Qiangling,CAO Shenggen,YAN Lun,et al. Research framework of theory and technology for CO2 geological storage,migration and solidification in coal mining–induced space[J]. Journal of Mining & Safety Engineering,2023,40(5):1003−1017.
[28] OSTERWALD F W,BENNETTI J B,DUNRUD C R. Preliminary investigation of seismic tremors in the general area of the Leyden coal mine gas–storage reservoir,Colorado[R]. Colorado:United States Department of the Interior Geological Survey,1973:1–23.
[29] WANG Wei,ZHAO Qiankun,LI Peng,et al. Division method of coal spontaneous combustion zone in multi–layer goafs based on fracture development law[J]. Combustion Science and Technology,2023,195(6):1346−1368.
[30] 董海清,李亚斌,郭冬梅,等. 粉煤灰–煤矸石膏体材料特性及采空区充填技术分析[J]. 煤炭工程,2025,57(1):77−82.
DONG Haiqing,LI Yabin,GUO Dongmei,et al. Characteristics of fly ash gangue based paste material and analysis on the goaf filling technology[J]. Coal Engineering,2025,57(1):77−82.
[31] 刘欣欣,齐学元,耿俊俊. 浅埋房柱式采空区煤柱稳定性及控制研究[J]. 采矿与岩层控制工程学报,2024,6(2):023537.
LIU Xinxin,QI Xueyuan,GENG Junjun. Stability and control of room–and–pillar mined–out area in shallow coal seam[J]. Journal of Mining and Strata Control Engineering,2024,6(2):023537.
[32] 马永法,董俊领,王旭,等. 松辽盆地林甸地区二氧化碳咸水层封存适宜性评价[J]. 水文地质工程地质,2025,52(1):238−248.
MA Yongfa,DONG Junling,WANG Xu,et al. Evaluation of suitability of CO2 geologic storage in deep saline aquifers in Lindian area of Songliao Basin[J]. Hydrogeology & Engineering Geology,2025,52(1):238−248.
[33] 彭玺伊,王延永,李嵩,等. 咸水层中液态与超临界CO2运移特征和封存方式[J]. 煤田地质与勘探,2025,53(2):99−106.
PENG Xiyi,WANG Yanyong,LI Song,et al. Migration characteristics and storage forms of liquid and supercritical CO2 in saline aquifers[J]. Coal Geology & Exploration,2025,53(2):99−106.
[34] 屈红军,李鹏,李严,等. 咸水层CO2不同捕获机理封存量计算方法及应用范围[J]. 西北大学学报(自然科学版),2023,53(6):913−925.
QU Hongjun,LI Peng,LI Yan,et al. Calculation and application scope of storage capacity of different CO2 trapping mechanisms in saline aquifers[J]. Journal of Northwest University (Natural Science Edition),2023,53(6):913−925.
[35] 袁哲,任培罡,刘金华,等. 咸水层CO2地质封存全地层地质建模技术研究[J/OL]. 地球科学,2024:1–12 [2024-11-19]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQKX20241117001&dbname=CJFD&dbcode=CJFQ.
YUAN Zhe,REN Peigang,LIU Jinhua,et al. Research on whole strata geological modeling technology for CO2 geological storage in salt water layer[J/OL]. Earth Science,2024:1–12 [2024-11-19]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQKX20241117001&dbname=CJFD&dbcode=CJFQ.
[36] 刘坤,周华强,郑立军,等. 膏体充填条带开采技术[J]. 煤炭科学技术,2010,38(2):10−14.
LIU Kun,ZHOU Huaqiang,ZHENG Lijun,et al. Strip mining technology with paste backfilling[J]. Coal Science and Technology,2010,38(2):10−14.
[37] 杜君武,黄庆享,韦业豪,等. 厚黄土层极近距离采空区下相邻工作面相向开采时序研究[J]. 采矿与岩层控制工程学报,2025,7(2):023543.
DU Junwu,HUANG Qingxiang,WEI Yehao,et al. Study on time sequence for opposite mining of adjacent working faces under ultra–close coal seam goafs with thick loess layer[J]. Journal of Mining and Strata Control Engineering,2025,7(2):023543.
[38] 黄庆享,张文忠. 浅埋煤层条带充填隔水岩组力学模型分析[J]. 煤炭学报,2015,40(5):973−978.
HUANG Qingxiang,ZHANG Wenzhong. Mechanical model of water resisting strata group in shallow seam strip–filling mining[J]. Journal of China Coal Society,2015,40(5):973−978.
[39] HOU Dongzhuang,XIAO Yifei,LIU Lang,et al. Combined analytic hierarchy process and weighted interval method models for the geological evaluation of CO2 storage in coal goaf[J]. Energies,2024,17(11):2672.
[40] 丁洋,陈文彬,林海飞,等. 煤矿采空区碳封存CO2泄漏地表扩散规律研究[J]. 西安科技大学学报,2023,43(4):705−714.
DING Yang,CHEN Wenbin,LIN Haifei,et al. Study on surface diffusion law of carbon storage CO2 leakage in coal mine goaf[J]. Journal of Xi’an University of Science and Technology,2023,43(4):705−714.
[41] 牟瑜,王浩璠,赖学军,等. 低孔低渗咸水层CO2封存选址评价体系:以鄂尔多斯盆地为例[J]. 煤田地质与勘探,2025,53(3):99−112.
MOU Yu,WANG Haofan,LAI Xuejun,et al. Assessment indicator system for siting of geologic CO2 sequestration in low–porosity and low–permeability saline aquifers:A case study of the Ordos Basin[J]. Coal Geology & Exploration,2025,53(3):99−112.
[42] AJAYI T,GOMES J S,BERA A. A review of CO2 storage in geological formations emphasizing modeling,monitoring and capacity estimation approaches[J]. Petroleum Science,2019,16(5):1028−1063.
[43] 王晓龙,刘蓉,王琪,等. 电厂烟气低浓度CO2的粉煤灰直接液相矿化技术[J]. 热力发电,2021,50(1):104−109.
WANG Xiaolong,LIU Rong,WANG Qi,et al. A new direct aqueous mineralization process to capture low concentration CO2 from power plant flue gas using fly ash[J]. Thermal Power Generation,2021,50(1):104−109.
[44] FANG Zhiyu,LIU Lang,ZHANG Xiaoyan,et al. Carbonation curing of modified magnesium–coal based solid waste backfill material for CO2 sequestration[J]. Process Safety and Environmental Protection,2023,180:778−788.
[45] FANG Zhiyu,LIU Lang,HE Wei,et al. Strength characteristics and carbonation depth evolution of modified magnesium slag based solid waste storage backfill materials[J]. Journal of Environmental Chemical Engineering,2024,12(2):111975.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons