Coal Geology & Exploration
Abstract
Objective Virtual models for excavation-supporting robot clusters targeting coal pillars between mining faces encounter challenges like a large data size and anomalies in data transmission, which lead to poor virtual-physical synchronization. This study proposed a method for efficient virtual-physical synchronization of the digital twin (DT) system of an excavation-supporting robot cluster using 3D model lightweighting and a trajectory prediction and correction model. Methods Fit-controlling vertices were defined, and their collapse cost factor was introduced to improve the quadratic error metric (QEM) algorithm and to constrain the lightweighting process of the 3D model of an assembly while maintaining fits between components. This leads to a decreased data size. A trajectory prediction-correction model was developed for the excavation-supporting robot cluster. Specifically, the movement trajectories of the twin robot cluster were predicted using the self-attention-long short-term memory (LSTM)-based trajectory prediction algorithm, followed by the real-time correction of the predicted trajectories using quadratic interpolation. This helps ensure the spatiotemporal consistency of the synchronization between the virtual model and the physical equipment. Furthermore, a simulation platform was constructed for DT-based efficient virtual-physical synchronization of an excavation-supporting robot cluster. Results and Conclusions The results indicate that the lightweighting process under the constraint of the collapse cost factor of fit-controlling vertices effectively suppressed the geometric error propagation while maintaining the mating surfaces in the assembly roughly unchanged, achieving a data compression ratio of 90%. For the prediction of the movement trajectories within 1.5 s, the self-attention-LSTM-based prediction algorithm yielded the lowest errors. The trajectory prediction-correction method reduced the mean absolute deviation (MAD) of the driving trajectory by 74.28%, effectively ensuring consistent, stable virtual-physical synchronization. The results indicate a maximum virtual-physical synchronization latency of 55.28 ms, an absolute positional error of 1.93 mm, and a relative positional error of 1.07%, suggesting high-accuracy, low-latency virtual-physical synchronization of an excavation-supporting robot cluster. The proposed method provides a new philosophy for enhancing the operational efficiency of the DT system of coal mining equipment.
Keywords
coal pillar between mining faces, digital twin (DT), excavation-supporting robot cluster, model lightweighting, quadratic error metric (QEM), trajectory prediction-correction
DOI
10.12363/issn.1001-1986.25.03.0154
Recommended Citation
MAO Qinghua, SIMA Junlei, MA Hongwei,
et al.
(2025)
"A method for efficient virtual-physical synchronization of the digital twin system of an excavation-supporting robot cluster targeting coal pillars between mining faces,"
Coal Geology & Exploration: Vol. 53:
Iss.
5, Article 21.
DOI: 10.12363/issn.1001-1986.25.03.0154
Available at:
https://cge.researchcommons.org/journal/vol53/iss5/21
Reference
[1] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27.
WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27.
[2] 王双明,刘浪,朱梦博,等. 面间煤柱与顺槽“掘–充–留”一体化科学问题与技术[J]. 煤炭学报,2024,49(8):3291−3315.
WANG Shuangming,LIU Lang,ZHU Mengbo,et al. Scientific problems and technology of the integration of “excavation–backfill–retention” of section coal pillar and mining roadway[J]. Journal of China Coal Society,2024,49(8):3291−3315.
[3] 张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168−176.
ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168−176.
[4] ZHANG Meng,TAO Fei,HUANG Biqing,et al. Digital twin data:Methods and key technologies[J]. Digital Twin,2022,1(2):1−29.
[5] GARLAND M,HECKBERT P S. Surface simplification using quadric error metrics[C]//Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. ACM,1997:209–216.
[6] BAHIRAT K,LAI Chengyuan,MCMAHAN R P,et al. Designing and evaluating a mesh simplification algorithm for virtual reality[J]. ACM Transactions on Multimedia Computing,Communications,and Applications,2018,14(3):63.
[7] CHANG Han,DONG Yanan,ZHANG Di,et al. Review of three–dimensional model simplification algorithms based on quadric error metrics and bibliometric analysis by knowledge map[J]. Mathematics,2023,11(23):4815.
[8] 薛俊杰,施国强,周军华,等. 复杂产品三维模型轻量化服务构建技术[J]. 系统仿真学报,2020,32(4):553−561.
XUE Junjie,SHI Guoqiang,ZHOU Junhua,et al. Simplification and compression service construction of 3D model for complex products[J]. Journal of System Simulation,2020,32(4):553−561.
[9] 李少卿,霍亮,沈涛,等. 顾及角度误差的三维建筑模型边折叠简化算法[J]. 武汉大学学报(信息科学版),2021,46(8):1209−1215.
LI Shaoqing,HUO Liang,SHEN Tao,et al. A simplification algorithm for edge collapse of 3D building model considering angle error[J]. Geomatics and Information Science of Wuhan University,2021,46(8):1209−1215.
[10] 张韵,王淑营,郑庆,等. 保持细节几何特征的三维网格模型轻量化算法[J]. 计算机应用,2023,43(4):1226−1232.
ZHANG Yun,WANG Shuying,ZHENG Qing,et al. Lightweight algorithm of 3D mesh model for preserving detailed geometric features[J]. Journal of Computer Applications,2023,43(4):1226−1232.
[11] 金河,刘涛,杜萍,等. 基于边折叠的实景三维模型简化算法[J]. 地球信息科学学报,2024,26(10):2254−2267.
JIN He,LIU Tao,DU Ping,et al. Mesh simplification algorithm for photorealistic 3D models based on edge collapse[J]. Journal of Geo–Information Science,2024,26(10):2254−2267.
[12] 殷明强,李世其. 保持外观特征的装配模型简化方法[J]. 计算机集成制造系统,2013,19(11):2773−2779.
YIN Mingqiang,LI Shiqi. Appearance features preserving simplification of assembly models[J]. Computer Integrated Manufacturing Systems,2013,19(11):2773−2779.
[13] 陶飞,马昕,戚庆林,等. 数字孪生连接交互理论与关键技术[J]. 计算机集成制造系统,2023,29(1):1−10.
TAO Fei,MA Xin,QI Qinglin,et al. Theory and key technologies of digital twin connection and interaction[J]. Computer Integrated Manufacturing Systems,2023,29(1):1−10.
[14] 曹现刚,段欣宇,张梦园,等. 煤矿设备状态监测系统设计[J]. 工矿自动化,2021,47(5):101−105.
CAO Xiangang,DUAN Xinyu,ZHANG Mengyuan,et al. Coal mine equipment condition monitoring system design[J]. Industry and Mine Automation,2021,47(5):101−105.
[15] ZHENG Jinkai,LUAN T H,ZHANG Yao,et al. Data synchronization in vehicular digital twin network:A game theoretic approach[J]. IEEE Transactions on Wireless Communications,2023,22(11):7635−7647.
[16] 李娟莉,李梦辉,谢嘉成,等. 分布式实时运行数据驱动的液压支架群虚拟监测关键技术[J]. 北京理工大学学报,2021,41(10):1023−1033.
LI Juanli,LI Menghui,XIE Jiacheng,et al. Key technologies of virtual monitoring driven by distributed real–time running data for hydraulic support group[J]. Transactions of Beijing Institute of Technology,2021,41(10):1023−1033.
[17] 徐健,刘高峰,赵一剑,等. 装配机器人的数字孪生虚实同步及抓取方法[J]. 系统仿真学报,2024,36(9):2181−2192.
XU Jian,LIU Gaofeng,ZHAO Yijian,et al. The synchronous grasping method of virtual–real assembly robot based on digital twin[J]. Journal of System Simulation,2024,36(9):2181−2192.
[18] QIU Weizhi,WEI Shangguan,CAI Baigen,et al. Heterogeneous data–based spatiotemporal trajectory synchronization for virtual–real interactive testing[J]. Computer–Aided Civil and Infrastructure Engineering,2023,38(1):49−66.
[19] 王张飞,刘春阳,隋新,等. 基于深度投影的三维点云目标分割和碰撞检测[J]. 光学精密工程,2020,28(7):1600−1608.
WANG Zhangfei,LIU Chunyang,SUI Xin,et al. Three–dimensional point cloud object segmentation and collision detection based on depth projection[J]. Optics and Precision Engineering,2020,28(7):1600−1608.
[20] 关立文,戴玉喜,王立平. 空间三角面片对相交判断算法[J]. 清华大学学报(自然科学版),2017,57(9):970−974.
GUAN Liwen,DAI Yuxi,WANG Liping. Intersection test algorithm for spacial triangular facets[J]. Journal of Tsinghua University (Science and Technology),2017,57(9):970−974.
[21] 古瑶,解海军,周子鹏,等. 基于Attention机制的CNN–BiLSTM瞬变电磁实时反演方法[J]. 煤田地质与勘探,2023,51(10):134−143.
GU Yao,XIE Haijun,ZHOU Zipeng,et al. An Attention mechanism–based CNN–BiLSTM real–time transient electromagnetic method[J]. Coal Geology & Exploration,2023,51(10):134−143.
[22] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017). Long Beach,2017:6000–6010.
[23] ZHANG Meirong,SABERI A,STOORVOGEL A A. Semi–global state synchronization for discrete–time multi–agent systems subject to actuator saturation and unknown nonuniform input delay[J]. European Journal of Control,2020,54:12−21.
[24] 毛君,董钰峰,卢进南,等. 巷道掘进截割钻进先进技术研究现状及展望[J]. 煤炭学报,2021,46(7):2084−2099.
MAO Jun,DONG Yufeng,LU Jinnan,et al. Research status and prospect of advanced technology of roadway excavation cutting and drilling equipment[J]. Journal of China Coal Society,2021,46(7):2084−2099.
[25] 马宏伟,李烺,薛旭升,等. 护盾式临时支护机器人带压行驶液压控制系统研究[J]. 工矿自动化,2024,50(7):21−31.
MA Hongwei,LI Lang,XUE Xusheng,et al. Research on hydraulic control system for shield type temporary support robot driving under pressure[J]. Journal of Mine Automation,2024,50(7):21−31.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons