Coal Geology & Exploration
Abstract
Background Coalfield structures represent a basic aspect of coalfield geology. In China, research into this domain has a history of over a century, yielding numerous results after undergoing exploration, learning, and innovation. These results have played a positive role in the long-term, stable coal supply in China. Amidst the ongoing energy structure optimization and the transformation and upgrading of coalfield geology in China, it is both practically and historically significant to review the history of coalfield structure research, summarize relevant experience, and contemplate future directions of the research under emerging circumstances.Methods Based on literature analysis, as well as the long-term research practices of the authors’ team, this study discusses the disciplinary attribute of coalfield structure research, reviews the history of this field both at home and abroad, and summarizes major achievements in China. Furthermore, it analyzes the issues and challenges of coalfield structure research in China and articulates future trends. By integrating advanced international geological theories with domestic coalfield geological practices, China’s coalfield geologists have established theoretical and methodological systems with distinctive Chinese characteristics for coalfield structure research. Advances and Prospects By integrating advanced international geological theories with domestic coalfield geological practices, China’s coalfield geologists have established theoretical and methodological systems with distinctive Chinese characteristics for coalfield structure research. Recent important achievements made in the coalfield structure research in China include: (1) a deep understanding of the characteristics and spatiotemporal differences of coalfield structures across the country, (2) continuous, in-depth research on regional structures in coalfields and coal basin structures, (3) the development of the concept of structure-controlled coals, (4) significant breakthroughs in research on coalfield detachment structures, (5) significant achievements in research on coal deformation and metamorphism, (6) attention being paid to the controlling effects of structures on coal-measure minerals, and (7) the emergence of mine structure research as a popular direction. The complexity of coalfield geological structures in China determines the important role of coalfield structure research in the exploration and exploitation of coal resources. In the next few years, it is necessary to deepen and broaden the fields of coalfield structure research in China by keeping pace with the advancements in contemporary geological science and technology, as well as national and industrial demands. Moreover, it is recommended that the theoretical and methodological systems of coalfield structures in China should be further improved by persisting in innovations while preserving distinctive Chinese characteristics.
Keywords
coalfield structure, structure-controlled coal, historical overview, research achievements, future prospect
DOI
10.12363/issn.1001-1986.25.04.0236
Recommended Citation
CAO Daiyong, JU Yiwen, XIA Yucheng,
et al.
(2025)
"Historical overview, advancements, and future prospects of coalfield structure research in China,"
Coal Geology & Exploration: Vol. 53:
Iss.
5, Article 2.
DOI: 10.12363/issn.1001-1986.25.04.0236
Available at:
https://cge.researchcommons.org/journal/vol53/iss5/2
Reference
[1] 韩德馨,杨起. 中国煤田地质学(下册):中国聚煤规律[M]. 北京:煤炭工业出版社,1980.
[2] 黄克兴,夏玉成. 构造控煤概论[M]. 北京:煤炭工业出版社,1991.
[3] 曹代勇,张守仁,穆宣社,等. 中国含煤岩系构造变形控制因素探讨[J]. 中国矿业大学学报,1999,28(1):25−28.
CAO Daiyong,ZHANG Shouren,MU Xuanshe,et al. Study on control factors of deformation of coal measures in China[J]. Journal of China University of Mining & Technology,1999,28(1):25−28.
[4] 曹代勇,宁树正,郭爱军,等. 中国煤田构造格局与构造控煤作用[M]. 北京:科学出版社,2017.
[5] 贾承造,雷永良,陈竹新. 构造地质学的进展与学科发展特点[J]. 地质论评,2014,60(4):709−720.
JIA Chengzao,LEI Yongliang,CHEN Zhuxin. Progress and development features of structural geology and tectonics[J]. Geological Review,2014,60(4):709−720.
[6] 童亨茂,侯泉林,陈正乐,等. 走向构造地质学健康发展之路:我国构造地质学有关问题及未来发展方向探讨[J]. 地质论评,2023,69(1):15−23.
TONG Hengmao,HOU Quanlin,CHEN Zhengle,et al. A path to the healthy development of structural geology and tectonics:Discussion on related issues and future development directions of structural geology and tectonics in our country[J]. Geological Review,2023,69(1):15−23.
[7] 张泓,张群,曹代勇,等. 中国煤田地质学的现状与发展战略[J]. 地球科学进展,2010,25(4):343−352.
ZHANG Hong,ZHANG Qun,CAO Daiyong,et al. Status and development strategy of coal geology in China[J]. Advances in Earth Science,2010,25(4):343−352.
[8] 王佟,邵龙义,夏玉成,等. 中国煤炭地质研究取得的重大进展与今后的主要研究方向[J]. 中国地质,2017,44(2):242−262.
WANG Tong,SHAO Longyi,XIA Yucheng,et al. Major achievements and future research directions of the coal geology in China[J]. Geology in China,2017,44(2):242−262.
[9] 秦勇. 中国煤系矿产近现代地质研究进展与走向[J]. 煤田地质与勘探,2025,53(1):12−35.
QIN Yong. Advances and trends of modern and contemporary research on the geology of coal–measure minerals in China[J]. Coal Geology & Exploration,2025,53(1):12−35.
[10] 杨锡禄,周国铨. 中国煤炭工业百科全书:地质·测量卷[M]. 北京:煤炭工业出版社,1996.
[11] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 煤矿科技术语 第1部分:煤炭地质与勘查:GB/T 15663. 1—2008[S]. 北京:中国标准出版社,2009.
[12] 王桂梁. 滑脱构造的解析流程与模式研究[J]. 煤田地质与勘探,1989(1):17−22.
WANG Guiliang. Study of analytic process diagram and models of sliding structures[J]. Coal Geology & Exploration,1989(1):17−22.
[13] 曹代勇. 煤田构造研究:思路与方法[J]. 中国煤田地质,2006,18(6):1−4.
CAO Daiyong. Working over coalfield structures:Reasons and methodology[J]. Coal Geology of China,2006,18(6):1−4.
[14] 琚宜文,李小诗. 构造煤超微结构研究新进展[J]. 自然科学进展,2009,19(2):131−140.
[15] JU Yiwen,YU Kun,WANG Guangzeng,et al. Coupling response of the Meso–Cenozoic differential evolution of the North China Craton to lithospheric structural transformation[J]. Earth–Science Reviews,2021,223:103859.
[16] 宋党育,袁镭,白万备,等. 煤地质学研究进展与前沿[J]. 煤田地质与勘探,2016,44(4):1−7.
SONG Dangyu,YUAN Lei,BAI Wanbei,et al. Advance and frontier of coal geology[J]. Coal Geology & Exploration,2016,44(4):1−7.
[17] 杨起. 煤地质学进展[M]. 北京:科学出版社,1987.
[18] BUTLER J,MARSH H,GOODARZI F. World coals:Genesis of the world’s major coalfields in relation to plate tectonics[J]. Fuel,1988,67(2):269−274.
[19] LYONS P C,RICE C L,eds. Paleoenvironmental and tectonic controls in coal–forming basins in the United States[M]. Boulder:Geological Society of America,1986.
[20] WARWICK P D. Coal systems analysis[M]. Boulder:Geological Society of America,2005.
[21] 赵明鹏. 构造解析法在矿井地质构造预测中的应用[J]. 阜新矿业学院学报,1991,10(3):68−71.
ZHAO Mingpeng. The application of structural analytics to calculating geological structure in mine[J]. Journal of Fuxin Mining Institute,1991,10(3):68−71.
[22] 徐凤银,魏铭康. 矿井构造预测与评价的理论、方法及其应用[M]. 徐州:中国矿业大学出版社,1993.
[23] 姜波,李明,程国玺,等. 矿井构造预测及其在瓦斯突出评价中的意义[J]. 煤炭学报,2019,44(8):2306−2317.
JIANG Bo,LI Ming,CHENG Guoxi,et al. Mine geological structure prediction and its significance for gas outburst hazard evaluation[J]. Journal of China Coal Society,2019,44(8):2306−2317.
[24] STONE I J,COOK A C. The influence of some tectonic structures upon vitrinite reflectance[J]. The Journal of Geology,1979,87(5):497−508.
[25] HOWER J C,DAVIS A. Vitrinite reflectance anisotropy as a tectonic fabric element[J]. Geology,1981,9(4):165−168.
[26] LEVINE J R,DAVIS A. The relationship of coal optical fabrics to Alleghanian tectonic deformation in the central Appalachian fold–and–thrust belt,Pennsylvania[J]. Geological Society of America Bulletin,1989,101(10):1333−1347.
[27] BUSTIN R M,ROSS J V,MOFFAT I. Vitrinite anisotropy under differential stress and high confining pressure and temperature:Preliminary observations[J]. International Journal of Coal Geology,1986,6(4):343−351.
[28] BUSTIN R M,ROSS J V,ROUZAUD J N. Mechanisms of graphite formation from kerogen:Experimental evidence[J]. International Journal of Coal Geology,1995,28(1):1−36.
[29] 中国煤田地质总局. 中国煤田地质勘探史[M]. 北京:煤炭工业出版社,1993.
[30] WENG Wenhao. An outline of the geological structure of Shansi[J]. Acta Geologica Sinica (English Edition),1925,4(2):197−204.
[31] WONG W H. The Mesozoic Orogenic movement in Eastern China[J]. Bulletin of the Geological Society of China,1929,8(1):33−44.
[32] 侯德封. 太行山东麓煤田地质构造研究[J]. 地质汇报,1930(15):25−51.
HOU Defeng. Geological structure of the coal field in the eastern foot of the Taihang Mountains[J]. Geological Report,1930(15):25−51.
[33] 吴根耀. 张文佑教授与煤田地质学[J]. 煤田地质与勘探,1989,17(4):2−6.
WU Genyao. Some contributions of professor Zhang Wenyou to the coal geology[J]. Coal Geology & Exploration,1989,17(4):2−6.
[34] 谢家荣. 淮南新煤田及大淮南盆地地质矿产[J]. 地质论评,1947(5):318−347.
[35] 童玉明. 中国成煤大地构造[M]. 北京:科学出版社,1994.
[36] 北京矿业学院煤田地质系. 中国煤田地质学[M]. 北京:煤炭工业出版社,1961.
[37] 杨起,韩德馨. 中国煤田地质学(上册):煤田地质基础理论[M]. 北京:煤炭工业出版社,1979.
[38] 武汉地质学院煤田教研室. 煤田地质学(上册)[M]. 北京:地质出版社,1979.
[39] KAO Wentai. Plate tectonics and coalfield in China[C]. In:Proceedings of the International Symposium on Mining Technology and Science. Beijing:China Coal Industry Publishing House,1987.
[40] 罗中舒. 板块构造与青藏高原煤田关系的探讨[J]. 煤炭学报,1980,5(2):34−43.
LUO Zhongshu. Investigation on the relationship between plate tectonics and coal deposits in Qinghai and Xizang Plateau[J]. Journal of China Coal Society,1980,5(2):34−43.
[41] 李思田. 断陷盆地分析与煤聚积规律:中国东北部晚中生代断陷盆地沉积、构造演化和能源预测研究的方法与成果[M]. 北京:地质出版社,1988.
[42] 夏玉成,侯恩科. 中国区域地质学[M]. 徐州:中国矿业大学出版社,1996.
[43] 王桂梁,曹代勇,姜波,等. 华北南部的逆冲推覆伸展滑覆与重力滑动构造[M]. 徐州:中国矿业大学出版社,1992.
[44] 王文杰,王信. 中国东部煤田推覆、滑脱构造与找煤研究[M]. 徐州:中国矿业大学出版社,1993.
[45] 毛节华,许惠龙. 中国煤炭资源预测与评价[M]. 北京:科学出版社,1999.
[46] 王桂梁. 矿井构造预测[J]. 中国矿业学院学报,1978,7:33−50.
[47] 王桂梁,琚宜文,郑孟林,等. 中国北部能源盆地构造[M]. 徐州:中国矿业大学出版社,2007.
[48] CAO Daiyong,LIN Zhongyue,ZHENG Zhihong,et al. Coalfield structures and potential evaluation of coal resources in China[J]. Advanced Materials Research,2011,356/360:2937−2940.
[49] 中国煤炭地质总局. 中国煤炭资源赋存规律与资源评价[M]. 北京:科学出版社,2016.
[50] 张子敏,吴吟. 中国煤矿瓦斯赋存构造逐级控制规律与分区划分[J]. 地学前缘,2013,20(2):237−245.
ZHANG Zimin,WU Yin. Tectonic–level–control rule and area–dividing of coalmine gas occurrence in China[J]. Earth Science Frontiers,2013,20(2):237−245.
[51] 王安民,曹代勇,魏迎春,等. 青海聚乎更矿区煤系非常规天然气赋存规律[M]. 北京:地质出版社,2022.
[52] 夏玉成,孙学阳,汤伏全. 煤矿区构造控灾机理及地质环境承载能力研究[M]. 北京:科学出版社,2008.
[53] 曹代勇,占文锋,李焕同,等. 中国煤矿动力地质灾害的构造背景与风险区带划分[J]. 煤炭学报,2020,45(7):2376−2388.
CAO Daiyong,ZHAN Wenfeng,LI Huantong,et al. Tectonic setting and risk zoning of dynamic geological disasters in coal mines in China[J]. Journal of China Coal Society,2020,45(7):2376−2388.
[54] 曹代勇,秦国红,魏迎春,等. 煤系矿产资源赋存的盆地动力学控制:研究现状与展望[J]. 中国煤炭地质,2020,32(9):38−46.
CAO Daiyong,QIN Guohong,WEI Yingchun,et al. Basin dynamics controlling of coal measures mineral resources hosting:Research status and expectation[J]. Coal Geology of China,2020,32(9):38−46.
[55] 王路,董业绩,张鹤,等. 煤成石墨化作用的影响因素及其实验验证[J]. 矿业科学学报,2018,3(1):9−19.
WANG Lu,DONG Yeji,ZHANG He,et al. Factors affecting graphitization of coal and the experimental validation[J]. Journal of Mining Science and Technology,2018,3(1):9−19.
[56] 曹代勇,王路,刘志飞,等. 煤系石墨成矿机理与赋存规律[M]. 北京:地质出版社,2023.
[57] 姜波,李明,宋昱,等. 构造煤及其瓦斯地质意义[M]. 北京:科学出版社,2020.
[58] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141.
CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136−141.
[59] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345.
PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.
[60] 贾建称,陈健,柴宏有,等. 矿井构造研究现状与发展趋势[J]. 煤炭科学技术,2008,36(10):72−77.
JIA Jiancheng,CHEN Jian,CHAI Hongyou,et al. Research status and development tendency of mine coalfield tectonics[J]. Coal Science and Technology,2008,36(10):72−77.
[61] 任纪舜,牛宝贵,赵磊,等. 黄汲清与中国大地构造研究[J]. 地质学报,2024,98(3):637−646.
REN Jishun,NIU Baogui,ZHAO Lei,et al. Huang Jiqing (T. K. Huang) and Chinese geotectonics research[J]. Acta Geologica Sinica,2024,98(3):637−646.
[62] 李廷栋. 中国岩石圈构造单元[J]. 中国地质,2006,33(4):700−710.
LI Tingdong. Lithospheric tectonic units of China[J]. Geology in China,2006,33(4):700−710.
[63] 曹代勇,景玉龙,邱广忠,等. 中国的含煤岩系变形分区[J]. 煤炭学报,1998,23(5):449−454.
CAO Daiyong,JING Yulong,QIU Guangzhong,et al. Zoning of deformation of coal measures in China[J]. Journal of China Coal Society,1998,23(5):449−454.
[64] 贾建称,张妙逢,龙亚平. 中国含煤区地质背景与构造变形特征[J]. 安徽理工大学学报(自然科学版),2009,29(4):1−8.
JIA Jiancheng,ZHANG Miaofeng,LONG Yaping. The geological background and the structural deformation feature of coal bearing areas in China[J]. Journal of Anhui University of Science and Technology (Natural Science),2009,29(4):1−8.
[65] 莽东鸿. 中国煤盆地构造[M]. 北京:地质出版社,1994.
[66] 翟明国. 中国主要古陆与联合大陆的形成:综述与展望[J]. 中国科学:地球科学,2013,43(10):1583−1606.
ZHAI Mingguo. The main old lands in China and assembly of Chinese unified continent[J]. Science China:Earth Sciences,2013,43(10):1583−1606.
[67] 肖文交,宋东方,WINDLEY B F,等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学:地球科学,2019,49(10):1512−1545.
XIAO Wenjiao,SONG Dongfang,WINDLEY B F,et al. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China:Earth Sciences,2019,49(10):1512−1545.
[68] CAO Daiyong,ZHANG Pengfei,JIN Kuili,et al. Tectonic evolution and inversion of Turpan–Hami Basin,Northwestern China[J]. Scientia Geologica Sinica,1997,6(4):407−412.
[69] 李增学,张功成,李莹,等. 中国海域区古近纪含煤盆地与煤系分布研究[J]. 地学前缘,2012,19(4):314−326.
LI Zengxue,ZHANG Gongcheng,LI Ying,et al. The Paleogene coal–bearing basin and coal–measures distribution of China sea area[J]. Earth Science Frontiers,2012,19(4):314−326.
[70] 王桂梁,邵震杰,彭向峰,等. 中国东部中新生代含煤盆地的构造反转[J]. 煤炭学报,1997,22(6):561−565.
WANG Guiliang,SHAO Zhenjie,PENG Xiangfeng,et al. Structural inversion of Mesozoic–Cenozoic coal basins in Eastern China[J]. Journal of China Coal Society,1997,22(6):561−565.
[71] 江涛,刘占勇,程磊,等. 西北地区盆山构造演化及其控煤作用分析[J]. 煤田地质与勘探,2016,44(5):1−9.
JIANG Tao,LIU Zhanyong,CHENG Lei,et al. Basin–range tectonic evolution and its coal–controlling action in Northwest China[J]. Coal Geology & Exploration,2016,44(5):1−9.
[72] 谭节庆,马志凯,高科飞,等. 青藏高原北部煤系赋存的板块构造控制[J]. 煤炭学报,2016,41(2):286−293.
TAN Jieqing,MA Zhikai,GAO Kefei,et al. Control effect of plate tectonics on coal measures in northern Qinghai–Tibet Plateau[J]. Journal of China Coal Society,2016,41(2):286−293.
[73] 任文忠. 煤盆地分析原理和方法[M]. 北京:煤炭工业出版社,1993.
[74] ROURE F,CLOETINGH S,SCHECK–WENDEROTH M,et al. Achievements and challenges in sedimentary basin dynamics:A review[M]//CLOETINGH S,NEGENDANK J. New frontiers in integrated solid earth sciences. Dordrecht:Springer Netherlands,2009:145–233.
[75] 李思田. 沉积盆地动力学研究的进展、发展趋向与面临的挑战[J]. 地学前缘,2015,22(1):1−8.
LI Sitian. Advancement,trend and new challenges in basin geodynamics[J]. Earth Science Frontiers,2015,22(1):1−8.
[76] JU Yiwen,WANG Guangzeng,LI Sanzhong,et al. Geodynamic mechanism and classification of basins in the Earth system[J]. Gondwana Research,2022,102:200−228.
[77] 潘结南,侯泉林,琚宜文. 华北东部中生代构造体制转折及其深部控煤作用[M]//虎维岳,何满潮. 深部煤炭资源及开发地质条件研究现状与发展趋势. 北京:煤炭工业出版社,2008:58–67.
[78] 琚宜文,卫明明,侯泉林,等. 华北含煤盆地构造分异与深部煤炭资源就位模式[J]. 煤炭学报,2010,35(9):1501−1505.
JU Yiwen,WEI Mingming,HOU Quanlin,et al. The tectonic differentiation of the coal basins and the emplacement models of the deep coal in North China[J]. Journal of China Coal Society,2010,35(9):1501−1505.
[79] 李焕同. 华南赋煤区煤系构造变形特征及其构造演化[D]. 北京:中国矿业大学(北京),2014.
LI Huantong. Structural deformation of coal measures characteristics and tectonic evolution of South China coal occurrence district[D]. Beijing:China University of Mining & Technology (Beijing),2014.
[80] 曹代勇,宋时雨,马志凯,等. 晚三叠世昌都盆地构造背景及对成煤作用的控制[J]. 地学前缘,2019,26(2):169−178.
CAO Daiyong,SONG Shiyu,MA Zhikai,et al. Tectonic background of the Qamdo Basin and its structural control on coal forming in the Late Triassic[J]. Earth Science Frontiers,2019,26(2):169−178.
[81] 曹代勇,郭爱军,陈利敏,等. 煤田构造演化新解:从成煤盆地到赋煤构造单元[J]. 煤田地质与勘探,2016,44(1):1−8.
CAO Daiyong,GUO Aijun,CHEN Limin,et al. New interpretation of coalfield tectonic evolution:From coal–forming basins to coal–bearing tectonic units[J]. Coal Geology & Exploration,2016,44(1):1−8.
[82] 任文忠. 中国含煤沉积盆地分类[J]. 煤炭学报,1992,17(3):1−10.
REN Wenzhong. Classification of coal–bearing sedimentary basins in China[J]. Journal of China Coal Society,1992,17(3):1−10.
[83] 王仁农,李桂春. 中国含煤盆地演化和聚煤规律[M]. 北京:煤炭工业出版社,1998.
[84] 中国煤炭地质总局. 中国聚煤作用系统分析[M]. 徐州:中国矿业大学出版社,2001.
[85] 孙万禄,陈召佑,陈霞,等. 中国煤层气盆地[M]. 北京:地质出版社,2005.
[86] 王桂梁. 浅层重力滑动构造的类型划分与形成机制[J]. 中国矿业学院学报,1985,14(3):131−139.
WANG Guiliang. Classification and mechanism of the gravity gliding structures in shallow level of the earth crust[J]. Journal of China University of Mining & Technology,1985,14(3):131−139.
[87] 高文泰,曹代勇,钱光谟,等. 构造控煤作用的几种形式[J]. 煤田地质与勘探,1986,14(6):19−24.
[88] 夏玉成,王佟,王传涛,等. 新疆早–中侏罗世聚煤期同沉积构造及其控煤效应[J]. 煤田地质与勘探,2016,44(2):1−7.
XIA Yucheng,WANG Tong,WANG Chuantao,et al. Synsedimentary structures of Early–Middle Jurassic coal–accumulating period and their control on coal in Xinjiang[J]. Coal Geology & Exploration,2016,44(2):1−7.
[89] 张泓,白清昭,张笑薇,等. 鄂尔多斯聚煤盆地的形成及构造环境[J]. 煤田地质与勘探,1995,23(3):1−9.
ZHANG Hong,BAI Qingzhao,ZHANG Xiaowei,et al. Formation of the Ordos Basin and its coal–forming tectonic environment[J]. Coal Geology & Exploration,1995,23(3):1−9.
[90] 王双明. 鄂尔多斯盆地叠合演化及构造对成煤作用的控制[J]. 地学前缘,2017,24(2):54−63.
WANG Shuangming. Ordos Basin superposed evolution and structural controls of coal forming activities[J]. Earth Science Frontiers,2017,24(2):54−63.
[91] 占文锋,曹代勇,刘天绩,等. 柴达木盆地北缘控煤构造样式与赋煤规律[J]. 煤炭学报,2008,33(5):500−504.
ZHAN Wenfeng,CAO Daiyong,LIU Tianji,et al. Coal–controlled structural styles and coal occurrence regularity in northern Qaidam Basin[J]. Journal of China Coal Society,2008,33(5):500−504.
[92] 朱文伟,张品刚,张继坤,等. 安徽省两淮煤田控煤构造样式研究[J]. 中国煤炭地质,2011,23(8):49−52.
ZHU Wenwei,ZHANG Pingang,ZHANG Jikun,et al. Study on structural coal controlling pattern in Huainan and Huaibei coalfields,Anhui Province[J]. Coal Geology of China,2011,23(8):49−52.
[93] 孙学阳,夏玉成,李成,等. 韩城矿区构造控煤样式与构造控煤模式[J]. 西安科技大学学报,2019,39(1):50−55.
SUN Xueyang,XIA Yucheng,LI Cheng,et al. Coal–control structural patterns and coal–control structural modes of Hancheng mine area[J]. Journal of Xi’an University of Science and Technology,2019,39(1):50−55.
[94] MCCLAY K R,PRICE N J. Thrust and nappe tectonics[M]. London:Geological Society of London,Special Publication,1981.
[95] WERNICKE B,BURCHFIEL B C. Modes of extensional tectonics[J]. Journal of Structural Geology,1982,4(2):105−115.
[96] 徐凤银,龙荣生. 矿井层滑构造的发育规律及研究方法:以杉木树煤矿为例[J]. 煤田地质与勘探,1990,18(5):18−23.
[97] 曹运兴,彭立世. 顺煤断层的基本类型及其对瓦斯突出带的控制作用[J]. 煤炭学报,1995,20(4):413−417.
CAO Yunxing,PENG Lishi. Basic types of coal seam faults and their effect on controlling gas outburst zone[J]. Journal of China Coal Society,1995,20(4):413−417.
[98] 严家平,姚多喜,李义良,等. 层间滑动构造引起煤层厚度变化特征的研究[J]. 煤炭科学技术,1997,25(8):41−43.
[99] 琚宜文,侯泉林,姜波,等. 淮北海孜煤矿断层与层间滑动构造组合型式及其形成机制[J]. 地质科学,2006,41(1):35−43.
JU Yiwen,HOU Quanlin,JIANG Bo,et al. Group patterns of interlayer–gliding structures and faults and deformation conditions in coal seams of the Haizi mine,northern Anhui[J]. Chinese Journal of Geology,2006,41(1):35−43.
[100] 姚多喜,吴基文,张海阁. 孟庄井田的层滑构造及其形成机制分析[J]. 煤田地质与勘探,2002,30(2):16−18.
YAO Duoxi,WU Jiwen,ZHANG Haige. The analysis of seam–gliding structure and deformation mechanism in Mengzhuang mining field[J]. Coal Geology & Exploration,2002,30(2):16−18.
[101] 王竹泉. 绥远大青山煤田地质(原载“地质汇报”,1928年第10期)[M]//中国煤田地质局选辑. 王竹泉选集. 北京:煤炭工业出版社,1991:123–145.
[102] 张长厚,陈爱根,白志达. 河北省兴隆煤田及邻区厚皮式逆冲推覆构造与隐伏煤田问题[J]. 现代地质,1997,11(3):305−312.
ZHANG Changhou,CHEN Aigen,BAI Zhida. Thick–skinned thrust tectonics and its significance to exploration of concealed coalfield in Xinglong coalfield and adjacent area,Hebei Province[J]. Geoscience,1997,11(3):305−312.
[103] 王海军,刘善德,马良,等. 盘县煤田滑脱构造特征及其研究意义[J]. 中国煤炭地质,2023,35(2):1−9.
WANG Haijun,LIU Shande,MA Liang,et al. Characteristics of detachment structures and research significance in Panxian coal field[J]. Coal Geology of China,2023,35(2):1−9.
[104] 马杏垣. 嵩山构造变形:重力构造、构造解析[M]. 北京:地质出版社,1981.
[105] 李万程. 豫西晚古生代煤产地的“表皮构造”[J]. 煤田地质与勘探,1979,7(2):25−32.
[106] 李万程. 河南嵩山区煤产地中的重力滑动构造[M]//构造地质论丛编辑部. 构造地质论丛(二). 北京:地质出版社,1982.
[107] 王昌贤,曹代勇. 河南省嵩、箕地区石炭、二迭纪煤田中的滑动构造[J]. 湘潭矿业学院学报,1989,4(1):28−33.
WANG Changxian,CAO Daiyong. Slip structure in the coal basin of carboniferous and permiao in the Song Mountain and Ji Mountain area. Henan Province[J]. Journal of Xiangtan Mining Institute,1989,4(1):28−33.
[108] 刘传喜. 华北板块南部豫西滑动构造研究[M]. 北京:煤炭工业出版社,2008.
[109] 吴安国. 江西安福重力滑动构造[J]. 中国区域地质,1989,8(1):34−37.
WU Anguo. Gravity–gliding structure in Anfu,Jiangxi[J]. Regional Geology of China,1989,8(1):34−37.
[110] 吕朋菊,魏久传,张明利. 肥城煤田滑动构造的发现及其意义[J]. 山东矿业学院学报,1992,11(2):120−126.
LYU Pengju,WEI Jiuchuan,ZHANG Mingli. The discovery of gliding tectonics in Feicheng coalfield and its significance[J]. Journal of Shandong Mining Institute,1992,11(2):120−126.
[111] 罗荣贵,邓小利,徐飞,等. 太行山东麓煤田中段滑脱构造研究[J]. 中国煤炭地质,2023,35(2):10−16.
LUO Ronggui,DENG Xiaoli,XU Fei,et al. Study on detachment structure of middle section of coal field east of Taihang Mountains[J]. Coal Geology of China,2023,35(2):10−16.
[112] 郝富昌,刘明举,魏建平,等. 重力滑动构造对煤与瓦斯突出的控制作用[J]. 煤炭学报,2012,37(5):825−829.
HAO Fuchang,LIU Mingju,WEI Jianping,et al. The controlling role of gravitational slide structure to coal and gas outburst[J]. Journal of China Coal Society,2012,37(5):825−829.
[113] 赵苏启. 登封–新密煤田滑动构造的水文地质特征[J]. 煤田地质与勘探,1993,21(1):53−54.
[114] 王志荣. 郜城井田滑动构造带与矿井地质灾害[J]. 地质灾害与环境保护,2003,14(4):21−24.
WANG Zhirong. The property of engineering geology and hydrogeology of the F1 gliding structure zone in Gaocheng area and its prevention of hazards[J]. Journal of Geological Hazards and Environment Preservation,2003,14(4):21−24.
[115] WANG Guiliang,JIANG Bo,YU Zhiwei. Sheath folds formed under the action of gliding nappe and shearing[J]. Chinese Science Bulletin,1994,39(17):1463−1467.
[116] SAJGO C,MCEVOY J,WOLFF G A,et al. Influence of temperature and pressure on maturation processes–I. Preliminary report[J]. Organic Geochemistry,1986,10(1/2/3):331−337.
[117] CAO Daiyong,LI Xiaoming,ZHANG Shouren. Influence of tectonic stress on coalification:Stress degradation mechanism and stress polycondensation mechanism[J]. Science in China Series D:Earth Sciences,2007,50(1):43−54.
[118] 曹代勇,李小明,占文锋,等. 大别山北麓杨山煤系高煤级煤的变形变质作用研究[M]. 北京:地质出版社,2012.
[119] 张玉贵,张子敏,张小兵,等. 构造煤演化的力化学作用机制[J]. 中国煤炭地质,2008,20(10):11−13.
ZHANG Yugui,ZHANG Zimin,ZHANG Xiaobing,et al. Mechanochemical action mechanism of tectonically deformed coal evolvement[J]. Coal Geology of China,2008,20(10):11−13.
[120] 曹代勇,刘志飞,王安民,等. 构造物理化学条件对煤变质作用的控制[J]. 地学前缘,2022,29(1):439−448.
CAO Daiyong,LIU Zhifei,WANG Anmin,et al. Control of coal metamorphism by tectonic physicochemical conditions[J]. Earth Science Frontiers,2022,29(1):439−448.
[121] 缪奋. 煤的构造应力变质作用[J]. 煤炭科学技术,1979,7(2):44−48.
[122] 曲星武,王金城. 煤的结构与变质因素的关系[J]. 煤田地质与勘探,1980,8(3):20−28.
[123] CAO Yunxing,DAVIS A,LIU R X,et al. The influence of tectonic deformation on some geochemical properties of coals:A possible indicator of outburst potential[J]. International Journal of Coal Geology,2003,53(2):69−79.
[124] 姜波,秦勇. 变形煤的结构演化机理及其地质意义[M]. 徐州:中国矿业大学出版社,1998.
[125] 郭德勇,韩德馨. 构造煤的电子顺磁共振实验研究[J]. 中国矿业大学学报,1999,28(1):94−97.
GUO Deyong,HAN Dexin. Electron paramagnetic resonance studies of the structurally disturbed coals[J]. Journal of China University of Mining & Technology,1999,28(1):94−97.
[126] 琚宜文,姜波,王桂樑,等. 构造煤结构及储层物性[M]. 徐州:中国矿业大学出版社,2005.
[127] 李小明,曹代勇,张守仁,等. 构造煤与原生结构煤的显微傅立叶红外光谱特征对比研究[J]. 中国煤田地质,2005,17(3):9−11.
LI Xiaoming,CAO Daiyong,ZHANG Shouren,et al. Contrast study on the Micro–FTIR characters between deformed and undeformed coals[J]. Coal Geology of China,2005,17(3):9−11.
[128] 曹代勇,李小明,魏迎春,等. 构造煤与原生结构煤的热解成烃特征研究[J]. 煤田地质与勘探,2005,33(4):39−41.
CAO Daiyong,LI Xiaoming,WEI Yingchun,et al. Study on pyrogenation hydrocarbon generation character of deformed coal and undeformed coal[J]. Coal Geology & Exploration,2005,33(4):39−41.
[129] 王桂梁,朱炎铭. 论煤层流变[J]. 中国矿业学院学报,1988,17(3):16−25.
WANG Guiliang,ZHU Yanming. Study on the rheology of coal bed[J]. Journal of China University of Mining & Technology,1988,17(3):16−25.
[130] 侯泉林,张子敏. 关于“糜棱煤”概念之探讨[J]. 焦作矿业学院学报,1990,9(2):21−26.
HOU Quanlin,ZHANG Zimin. The study of the concept of Mylon–coal[J]. Journal of Jiaozuo Mining Institute,1990,9(2):21−26.
[131] 曹代勇,张守仁,任德贻. 构造变形对煤化作用进程的影响:以大别造山带北麓地区石炭纪含煤岩系为例[J]. 地质论评,2002,48(3):313−317.
CAO Daiyong,ZHANG Shouren,REN Deyi. The influence of structural deformation on coalification:A case study of carboniferous coal measures in the northern foothills of the Dabie Orogenic Belt[J]. Geological Review,2002,48(3):313−317.
[132] 琚宜文,王桂梁,姜波. 浅层次脆性变形域中煤层韧性剪切带微观分析[J]. 中国科学(D辑),2003,33(7):626−635.
[133] 王恩营,刘明举,魏建平. 构造煤成因–结构–构造分类新方案[J]. 煤炭学报,2009,34(5):656−660.
WANG Enying,LIU Mingju,WEI Jianping. New genetic–texture–structure classification system of tectonic coal[J]. Journal of China Coal Society,2009,34(5):656−660.
[134] 曹代勇,唐跃刚. 煤中应变各向异性条纹的发现及意义[J]. 煤田地质与勘探,1994,22(3):14−16.
CAO Daiyong,TANG Yuegang. The strain optical anisotropic lamella in coal and its geological significance[J]. Coal Geology & Exploration,1994,22(3):14−16.
[135] 琚宜文,姜波,侯泉林,等. 构造煤结构–成因新分类及其地质意义[J]. 煤炭学报,2004,29(5):513−517.
JU Yiwen,JIANG Bo,HOU Quanlin,et al. The new structure–genetic classification system in tectonically deformed coals and its geological significance[J]. Journal of China Coal Society,2004,29(5):513−517.
[136] CAO Yunxing,MITCHELL G D,DAVIS A,et al. Deformation metamorphism of bituminous and anthracite coals from China[J]. International Journal of Coal Geology,2000,43(1/2/3/4):227−242.
[137] 高凌蔚,李涛,苗康运,等. 豫西云盖山地区山西组二1煤层构造形变及厚度变化规律[M]. 北京:地震出版社,1986.
[138] FRODSHAM K,GAYER R A. The impact of tectonic deformation upon coal seams in the South Wales coalfield,UK[J]. International Journal of Coal Geology,1999,38(3/4):297−332.
[139] 苏现波,谢洪波,华四良. 煤体脆–韧性变形微观识别标志[J]. 煤田地质与勘探,2003,31(6):18−21.
SU Xianbo,XIE Hongbo,HUA Siliang. The microscopic identification of coal brittle–ductile deformation[J]. Coal Geology & Exploration,2003,31(6):18−21.
[140] 周建勋,王桂梁,邵震杰. 煤的高温高压实验变形研究[J]. 煤炭学报,1994,19(3):324−332.
ZHOU Jianxun,WANG Guiliang,SHAO Zhenjie. Coal deformation under high temperature and confining pressure[J]. Journal of China Coal Society,1994,19(3):324−332.
[141] 姜波,秦勇,金法礼. 煤变形的高温高压实验研究[J]. 煤炭学报,1997,22(1):80−84.
JIANG Bo,QIN Yong,JIN Fali. Coal deformation test under high temperature and confining pressure[J]. Journal of China Coal Society,1997,22(1):80−84.
[142] 刘俊来,杨光,马瑞. 高温高压实验变形煤流动的宏观与微观力学表现[J]. 科学通报,2005,50(增刊1):56−63.
[143] 董博,曹代勇,魏迎春,等. 煤变质作用的构造物理化学机理实验研究进展[J]. 现代地质,2024,38(4):892−909.
DONG Bo,CAO Daiyong,WEI Yingchun,et al. Advancements in experimental studies on the tectonic physical–chemical mechanisms of coal metamorphism[J]. Geoscience,2024,38(4):892−909.
[144] WANG Anmin,CAO Daiyong,WEI Yingchun,et al. Macromolecular structure controlling micro mechanical properties of vitrinite and inertinite in tectonically deformed coals:A case study in Fengfeng coal mine of Taihangshan fault zone (North China)[J]. Energies,2020,13(24):6618.
[145] 侯晨亮,姜波,李明,等. 构造煤中有机显微组分变形差异的力学及分子结构本质[J/OL]. 煤炭学报,2025:1–14 [2025-02-19]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTXB20250219003&dbname=CJFD&dbcode=CJFQ.
HOU Chenliang,JIANG Bo,LI Ming,et al. Mechanical and molecular structure essence of the deformation differences in organic macerals of tectonically deformed coal[J/OL]. Journal of China Coal Society,2025:1–14 [2025-02-19]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTXB20250219003&dbname=CJFD&dbcode=CJFQ.
[146] 刘和武,吕晓雪,侯晨亮,等. 动力变质作用对构造煤微纳米孔隙结构演化的影响机理[J]. 煤田地质与勘探,2024,52(12):1−12.
LIU Hewu,LYU Xiaoxue,HOU Chenliang,et al. Influence mechanisms of dynamic metamorphism on the evolution of micro/nano pore structures in tectonically deformed coals[J]. Coal Geology & Exploration,2024,52(12):1−12.
[147] 郭德勇,李春娇,张友谊. 平顶山矿区原生结构煤和构造煤孔渗实验对比[J]. 地球科学,2014,39(11):1600−1606.
GUO Deyong,LI Chunjiao,ZHANG Youyi. Contrast study on porosity and permeability of tectonically deformed coal and indigenous coal in Pingdingshan mining area,China[J]. Earth Science,2014,39(11):1600−1606.
[148] 侯泉林,李小诗. 构造作用与瓦斯突出和超量煤层气[J]. 物理,2014,43(6):373−380.
HOU Quanlin,LI Xiaoshi. The effect of tectonic deformation on gas outburst and excess coalbed methane[J]. Physics,2014,43(6):373−380.
[149] 魏迎春,李超,曹代勇,等. 煤层气开发中煤粉产出机理及管控措施[J]. 煤田地质与勘探,2018,46(2):68−73.
WEI Yingchun,LI Chao,CAO Daiyong,et al. The output mechanism and control measures of the pulverized coal in coalbed methane development[J]. Coal Geology & Exploration,2018,46(2):68−73.
[150] YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental analysis on the effect of tectonically deformed coal types on fines generation characteristics[J]. Journal of Petroleum Science and Engineering,2016,146:350−359.
[151] 吴蒙,秦云虎,孔庆虎,等. 煤体结构测井响应及其判识方法研究进展[J]. 工程地球物理学报,2024,21(1):92−102.
WU Meng,QIN Yunhu,KONG Qinghu,et al. Developments in logging response and identification methods of coal structure[J]. Chinese Journal of Engineering Geophysics,2024,21(1):92−102.
[152] 桑树勋,周效志,刘世奇,等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报,2020,45(7):2531−2543.
SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society,2020,45(7):2531−2543.
[153] 杨起,吴冲龙,汤达祯,等. 中国煤变质作用[M]. 北京:煤炭工业出版社,1996.
[154] BONIJOLY M,OBERLIN M,OBERLIN A. A possible mechanism for natural graphite formation[J]. International Journal of Coal Geology,1982,1(4):283−312.
[155] 丁正云,王路,曾欢,等. 福建大田–漳平地区构造–热对煤系石墨成矿及赋存的控制探讨[J]. 煤田地质与勘探,2020,48(1):55−61.
DING Zhengyun,WANG Lu,ZENG Huan,et al. The control of mineralization and occurrence of coal–based graphite by tectonic–heat in Zhangping–Datian area,Fujian[J]. Coal Geology & Exploration,2020,48(1):55−61.
[156] 王路,曹代勇,丁正云,等. 闽西南地区煤成石墨的控制因素与成矿区带划分[J]. 煤炭学报,2020,45(8):2865−2871.
WANG Lu,CAO Daiyong,DING Zhengyun,et al. Controlling factors and metallogenic belts of coal–based graphite in the south–western Fujian Province[J]. Journal of China Coal Society,2020,45(8):2865−2871.
[157] BUSECK P R,BEYSSAC O. From organic matter to graphite:Graphitization[J]. Elements,2014,10(6):421−426.
[158] 李焕同,莫佳峰,武玉良,等. 湖南新化地区煤变形变质与构造环境特征[J]. 煤田地质与勘探,2017,45(4):7−12.
LI Huantong,MO Jiafeng,WU Yuliang,et al. Coal deformation,metamorphism and tectonic environment in Xinhua,Hunan[J]. Coal Geology & Exploration,2017,45(4):7−12.
[159] 胡棉舒,李阔,曹海月,等. 湘中寒婆坳矿区测水组无烟煤–煤系石墨变质温度研究[J]. 地球科学进展,2021,36(10):1015−1025.
HU Mianshu,LI Kuo,CAO Haiyue,et al. Investigation on the metamorphic temperature of the series naturally graphitized coals from anthracite to coaly graphite from Ceshui Formation of Hanpo’ao mining area,central Hunan[J]. Advances in Earth Science,2021,36(10):1015−1025.
[160] LIU Zhifei,CAO Daiyong,CHEN Gaojian,et al. Contrasting graphitization differences between vitrinite and inertinite based on high–temperature and high–pressure experiments[J]. Fuel,2024,362:130796.
[161] LIU Zhifei,CAO Daiyong,CHEN Gaojian,et al. Experimental verification for the graphitization of inertinite[J]. Minerals,2023,13(7):888.
[162] WANG Lu,CAO Daiyong,PENG Yangwen,et al. Strain–induced graphitization mechanism of coal–based graphite from Lutang,Hunan Province,China[J]. Minerals,2019,9(10):617.
[163] 孙升林,吴国强,曹代勇,等. 煤系矿产资源及其发展趋势[J]. 中国煤炭地质,2014,26(11):1−11.
SUN Shenglin,WU Guoqiang,CAO Daiyong,et al. Mineral resources in coal measures and development trend[J]. Coal Geology of China,2014,26(11):1−11.
[164] 曹代勇,秦国红,张岩,等. 含煤岩系矿产资源类型划分及组合关系探讨[J]. 煤炭学报,2016,41(9):2150−2155.
CAO Daiyong,QIN Guohong,ZHANG Yan,et al. Classification and combination relationship of mineral resources in coal measures[J]. Journal of China Coal Society,2016,41(9):2150−2155.
[165] 宁树正. 中国煤中金属元素矿产资源[M]. 北京:科学出版社,2019.
[166] 曹代勇,魏迎春. 鄂尔多斯盆地煤系矿产赋存规律与资源评价[M]. 北京:科学出版社,2019.
[167] 乔军伟. 青藏高原煤炭资源赋存规律与潜力评价[M]. 北京:科学出版社,2019.
[168] 刘金城. 华北西部晚古生代克拉通内层序地层及矿产资源分布[D]. 北京:中国矿业大学(北京),2020.
LIU Jincheng. Sequence stratigraphy and mineral resource distribution in the Late Paleozoic Cratonic interior of Western North China[D]. Beijing:China University of Mining & Technology (Beijing),2020.
[169] SUN Yuzhuang,ZHAO Cunliang,LI Yanheng,et al. Further information of the associated Li deposits in the No. 6 coal seam at Jungar coalfield,Inner Mongolia,Northern China[J]. Acta Geologica Sinica (English Edition),2013,87(4):1097−1108.
[170] 代世峰,任德贻,李生盛. 内蒙古准格尔超大型镓矿床的发现[J]. 科学通报,2006,51(2):177−185.
[171] 李俊,张定宇,李大华,等. 沁水盆地煤系非常规天然气共生聚集机制[J]. 煤炭学报,2018,43(6):1533−1546.
LI Jun,ZHANG Dingyu,LI Dahua,et al. Co–accumulating mechanisms of unconventional gas in the coal measure of the Qinshui Basin[J]. Journal of China Coal Society,2018,43(6):1533−1546.
[172] 曹代勇,魏迎春,秦国红,等. 煤系战略性金属元素富集成矿的构造控制[J]. 煤田地质与勘探,2023,51(1):66−85.
CAO Daiyong,WEI Yingchun,QIN Guohong,et al. Tectonic control on enrichment and metallogenesis of strategic metal elements in coal measures[J]. Coal Geology & Exploration,2023,51(1):66−85.
[173] 刘和武,姜波. 煤构造地球化学研究[M]. 徐州:中国矿业大学出版社,2021.
[174] DAI Shifeng,NECHAEV V P,CHEKRYZHOV I Y,et al. A model for Nb–Zr–REE–Ga enrichment in Lopingian altered alkaline volcanic ashes:Key evidence of H–O isotopes[J]. Lithos,2018,302/303:359−369.
[175] 宁树正,严晓云,黄少青,等. 中国煤中锗成矿特征与勘查进展[J]. 煤炭科学技术,2025,53(1):225−236.
NING Shuzheng,YAN Xiaoyun,HUANG Shaoqing,et al. Mineralization characteristics and exploration progress of germanium resources in Chinese coal[J]. Coal Science and Technology,2025,53(1):225−236.
[176] 魏迎春,曹代勇. 清洁用煤赋存规律及控制因素[M]. 北京:科学出版社,2024.
[177] 王毅,杨伟利,邓军,等. 多种能源矿产同盆共存富集成矿(藏)体系与协同勘探:以鄂尔多斯盆地为例[J]. 地质学报,2014,88(5):815−824.
WANG Yi,YANG Weili,DENG Jun,et al. Accumulation system of cohabitating multi–energy minerals and their comprehensive exploration in sedimentary basin:A case study of Ordos Basin,NW China[J]. Acta Geologica Sinica,2014,88(5):815−824.
[178] 曹代勇,聂敬,王安民,等. 鄂尔多斯盆地东缘临兴地区煤系气富集的构造–热作用控制[J]. 煤炭学报,2018,43(6):1526−1532.
CAO Daiyong,NIE Jing,WANG Anmin,et al. Structural and thermal control of enrichment conditions of coal measure gases in Linxing block of eastern Ordos Basin[J]. Journal of China Coal Society,2018,43(6):1526−1532.
[179] 琚宜文,乔鹏,卫明明,等. 区域构造与演化控制下煤层气富集高产典型模式[J]. 煤田地质与勘探,2022,50(9):1−12.
JU Yiwen,QIAO Peng,WEI Mingming,et al. Typical coalbed methane (CBM) enrichment and production modes under the control of regional structure and evolution[J]. Coal Geology & Exploration,2022,50(9):1−12.
[180] 龙荣生,徐凤银. 矿井断裂构造研究的新动向[J]. 煤田地质与勘探,1989,17(1):23−27.
[181] 夏玉成,胡明星,陈练武. 矿井构造的GMDH–BP评价预测方法及其应用[J]. 煤炭学报,1997,22(5):466−470.
XIA Yucheng,HU Mingxing,CHEN Lianwu. GMDH–BP method and its application in evaluation and prediction of mine structure[J]. Journal of China Coal Society,1997,22(5):466−470.
[182] 柴登榜. 矿井地质工作手册[M]. 北京:煤炭工业出版社,1986.
[183] 赵宗沛. 测定煤层破裂程度预报小断层的设想[J]. 煤田地质与勘探,1981,9(3):77−80.
[184] 周治安. 书斜式构造的成因及其特征[J]. 煤田地质与勘探,1979,7(4):1−14.
[185] 王桂梁. 矿井构造预测[M]. 北京:煤炭工业出版社,1993.
[186] 曹代勇,穆宣社,傅正辉,等. 为现代化矿井建设服务的地质构造定量研究技术[C]//世纪之交煤矿地质学术论文集. 西安:西安地图出版社,1999:147–152.
[187] 夏玉成,孙学阳,苗霖田,等. 智能时代的矿井地质工作展望:矿井开采智能地质保障技术体系架构[J]. 煤田地质与勘探,2025,53(1):64−76.
XIA Yucheng,SUN Xueyang,MIAO Lintian,et al. Prospects for mine geological work in the intelligence age:Architecture of the intelligent geological guarantee technology system for mine exploitation[J]. Coal Geology & Exploration,2025,53(1):64−76.
[188] 徐志斌,王继尧,张大顺,等. 煤矿断层网络复杂程度的分维描述[J]. 煤炭学报,1996,21(4):358−363.
XU Zhibin,WANG Jiyao,ZHANG Dashun,et al. Fractal dimension description of complexity of fault network in coal mines[J]. Journal of China Coal Society,1996,21
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons