Coal Geology & Exploration
Abstract
Background Geothermal energy in porous sandstone reservoirs is recognized as stable, efficient clean energy. However, these reservoirs feature heterogeneity and exploration uncertainty, posing serious challenges to probabilistic resource assessment and the identification of suitability for resource development.Methods This study investigated the geothermal resources in the Guantao Formation within the northwest Shandong plain. Using the volumetric method and Monte Carlo simulation, this study assessed the uncertainty of the resource potential. Then, considering the characteristics of geothermal resources, the attributes of geological structures, and the social economy, this study developed a multi-dimensional evaluation index system for the suitability of sandstone geothermal reservoirs. The weights of the evaluation indices were calculated using the game-based combination weighting method. Finally, this study conducted a quantitative suitability evaluation of the geothermal resources and verified the evaluation results based on the spatial distribution of geothermal wells. Results and Conclusions The results indicate that geothermal reservoirs in the Guantao Formation within the northwest Shandong plain hold maximum probabilistic geothermal resources of 5.68×1017 kJ, corresponding to coal equivalent of 1.94×1010 t. These reservoirs exhibit a 90% probability of geothermal resources of (4.75‒6.32)×1017 kJ and an average geothermal resource abundance of 3.35×1013 kJ/km2. Within the study area, zones with relatively high and high suitability cover an area of 5 557 km2, representing 35.63% of the total area. In contrast, zones with low suitability manifest the lowest areal proportion (merely 14.32%). The comprehensive analysis of the resource potential and suitability evaluation results reveals that the Dezhou buried fault depression in the northwest Shandong plain serves as the preferred target area for geothermal exploration and exploitation. The results of this study will provide technical support for the exploration optimization and target area identification of geothermal resources in key areas.
Keywords
geothermal resource, Monte Carlo simulation, geothermal reservoir characteristic, volumetric method, game-based combination weighting method, suitability evaluation, northwest Shandong plain
DOI
10.12363/issn.1001-1986.25.03.0143
Recommended Citation
HE Yixiang, DING Pengpeng, LIU Shaohua,
et al.
(2025)
"Assessing the potential and suitability of geothermal resources using Monte Carlo simulation and game-based combination weighting method,"
Coal Geology & Exploration: Vol. 53:
Iss.
5, Article 16.
DOI: 10.12363/issn.1001-1986.25.03.0143
Available at:
https://cge.researchcommons.org/journal/vol53/iss5/16
Reference
[1] 裴发根,何梅兴,方慧,等. 基于模糊数学法的松辽盆地深层地热资源潜力评价[J]. 地球科学,2023,48(3):1058−1079.
PEI Fagen,HE Meixing,FANG Hui,et al. Evaluation of deep geothermal resources potential in the Songliao Basin based on the fuzzy mathematics[J]. Earth Science,2023,48(3):1058−1079.
[2] 庞忠和,段忠丰. 华北赋煤区地热资源富集模式及开发利用方向[J]. 煤田地质与勘探,2024,52(9):14−22.
PANG Zhonghe,DUAN Zhongfeng. Accumulation patterns and exploitation and utilization targets of geothermal resources in the coal–bearing area in North China[J]. Coal Geology & Exploration,2024,52(9):14−22.
[3] 高宗军,吴立进,曹红. 山东省地热资源及其开发利用[J]. 山东科技大学学报 (自然科学版),2009,28(2):1−7.
GAO Zongjun,WU Lijin,CAO Hong. The summarization of geothermal resources and its exploitation and utilization in Shandong Province[J]. Journal of Shandong University of Science and Technology (Natural Science),2009,28(2):1−7.
[4] 王一波,刘绍文,陈超强,等. 中国陆域大地热流数据汇编(第五版)[J]. 地球物理学报,2024,67(11):4233−4265.
WANG Yibo,LIU Shaowen,CHEN Chaoqiang,et al. Compilation of terrestrial heat flow data in continental China (5th edition)[J]. Chinese Journal of Geophysics,2024,67(11):4233−4265.
[5] 赵铭海,李晓燕,宋明水,等. 济阳坳陷东营组–馆陶组地热资源评价[J]. 油气地质与采收率,2015,22(4):1−5.
ZHAO Minghai,LI Xiaoyan,SONG Mingshui,et al. Research on geothermal resources assessment of the Guantao–Dongying Formation in Jiyang depression[J]. Petroleum Geology and Recovery Efficiency,2015,22(4):1−5.
[6] 朱喜,张庆莲,刘彦广. 基于热储法的鲁西平原地热资源评价[J]. 地质科技情报,2016,35(4):172−177.
ZHU Xi,ZHANG Qinglian,LIU Yanguang. Evaluation of the geothermal resources in the plain of west Shandong Province[J]. Geological Science and Technology Information,2016,35(4):172−177.
[7] 康凤新,郑婷婷,史猛,等. 山东省地热资源赋存规律及其富集机制[J]. 地学前缘,2024,31(6):67−94.
KANG Fengxin,ZHENG Tingting,SHI Meng,et al. Occurrence rules and enrichment mechanism of geothermal resources in Shandong Province[J]. Earth Science Frontiers,2024,31(6):67−94.
[8] 康凤新,赵季初,黄迅,等. 华北盆地梁村古潜山岩溶热储聚热机制及资源潜力[J]. 地球科学,2023,48(3):1080−1092.
KANG Fengxin,ZHAO Jichu,HUANG Xun,et al. Heat accumulation mechanism and resources potential of the Karst geothermal reservoir in Liangcun buried uplift of Linqing depression[J]. Earth Science,2023,48(3):1080−1092.
[9] 朱喜,王贵玲,马峰,等. 雄安新区地热资源潜力评价[J]. 地球科学,2023,48(3):1093−1106.
ZHU Xi,WANG Guiling,MA Feng,et al. Evaluation of geothermal resources of the Xiong’an New Area[J]. Earth Science,2023,48(3):1093−1106.
[10] WITTER J B,TRAINOR–GUITTON W J,SILER D L. Uncertainty and risk evaluation during the exploration stage of geothermal development:A review[J]. Geothermics,2019,78:233−242.
[11] TIAN Baoqing,KONG Yanlong,GONG Yulie,et al. An improved volumetric method of geothermal resources assessment for shallow ground combining geophysical data[J]. Renewable Energy,2020,145:2306−2315.
[12] PALACIOS A,KOON–KOON R,MIRANDA–FLORES G,et al. A Monte Carlo–based approach for the evaluation of Mexico’s geothermal potential[J]. Renewable Energy,2024,223:120006.
[13] ELMASRY A,MOHALLEL S A,MADANI A,et al. Geothermal groundwater study and its energetic potential assessment in Abu Gharadig Basin,North Western Desert,Egypt[J]. Journal of African Earth Sciences,2023,202:104925.
[14] WANG Yibo,WANG Lijuan,BAI Yang,et al. Assessment of geothermal resources in the north Jiangsu Basin,East China,using Monte Carlo simulation[J]. Energies,2021,14(2):259.
[15] LI Yongyi,LONG Xiting,LU Jun. Evaluation of geothermal resources potential in the uplifted mountain of Guangdong Province using the Monte Carlo simulation[J]. Frontiers in Earth Science,2023,11:1233026.
[16] WANG Zhuting,JIANG Guangzheng,ZHANG Chao,et al. Estimating geothermal resources in Bohai Bay Basin,Eastern China,using Monte Carlo simulation[J]. Environmental Earth Sciences,2019,78(12):355.
[17] ZAHER M A,ELBARBARY S,EL–SHAHAT A,et al. Geothermal resources in Egypt integrated with GIS–based analysis[J]. Journal of Volcanology and Geothermal Research,2018,365:1−12.
[18] CAMBAZOĞLU S,YAL G P,EKER A M,et al. Geothermal resource assessment of the Gediz Graben utilizing TOPSIS methodology[J]. Geothermics,2019,80:92−102.
[19] LI Xuan,HUANG Changsheng,CHEN Wei,et al. GIS model for geothermal advantageous target selection[J]. Scientific Reports,2023,13(1):6024.
[20] DENG Q,JIANG A,TONG Z,et al. Evaluation of favourable hot dry rock areas in the east of the Yishu fault zone in China[J]. Australian Journal of Earth Sciences,2021,68(2):245−261.
[21] 饶松,肖红平,王朱亭,等. 渤海湾盆地馆陶组热储特征与地热资源评价[J]. 天然气工业,2023,43(5):141−152.
RAO Song,XIAO Hongping,WANG Zhuting,et al. Geothermal reservoir characteristics and geothermal resource evaluation of Guantao Formation in the Bohai Bay Basin[J]. Natural Gas Industry,2023,43(5):141−152.
[22] 宋前进,王刚,许一川,等. 深层地热能开发及其对地热水流场的影响:以兰考县深层地热能开发为例[J]. 煤田地质与勘探,2021,49(2):184−193.
SONG Qianjin,WANG Gang,XU Yichuan,et al. Development of deep geothermal energy and its influence on geothermal water flow field:Taking the development of deep geothermal energy in Lankao County for an example[J]. Coal Geology & Exploration,2021,49(2):184−193.
[23] 崔洋,康凤新,钟振楠,等. 鲁西北平原地热热源机制的气体同位素约束[J]. 地球学报,2023,44(1):93−106.
CUI Yang,KANG Fengxin,ZHONG Zhennan,et al. Gas isotope constraints on the geothermal heat source mechanism in northwest Shandong Plain[J]. Acta Geoscientica Sinica,2023,44(1):93−106.
[24] 于磊,张健,高玲举,等. 鲁西隆起重磁异常特征及其构造活动性分析[J]. 地震学报,2017,39(5):694−707.
YU Lei,ZHANG Jian,GAO Lingju,et al. Gravity–magnetic anomalies and tectonic activities in Luxi uplift[J]. Acta Seismologica Sinica,2017,39(5):694−707.
[25] 杨询昌,康凤新,王学鹏,等. 砂岩孔隙热储地温场水化学场特征及地热水富集机理:鲁北馆陶组热储典型案例[J]. 地质学报,2019,93(3):738−750.
YANG Xunchang,KANG Fengxin,WANG Xuepeng,et al. Hydrochemical features of geothermal reservoir geotemperature field in sandstone porosity and enrichment mechanism of geothermal water:A case study of geothermal reservoir of Guantao Formation in the Lubei[J]. Acta Geologica Sinica,2019,93(3):738−750.
[26] 张保建,刘福义,高宗军,等. 鲁西北地区理疗热矿水的形成条件及找矿靶区[J]. 中国地质,2015,42(4):1170−1178.
ZHANG Baojian,LIU Fuyi,GAO Zongjun,et al. Formation conditions and prospecting targets of physiotherapy geothermal mineral water in northwest Shandong Province[J]. Geology in China,2015,42(4):1170−1178.
[27] 张源,万志军,胡淞博,等. 矿井岩溶热储三维地质建模及地热资源潜力评价[J]. 煤炭学报,2024,49(8):3571−3579.
ZHANG Yuan,WAN Zhijun,HU Songbo,et al. 3D geological modeling of mine Karst geothermal reservoir and geothermal resources evaluation[J]. Journal of China Coal Society,2024,49(8):3571−3579.
[28] YALCIN M,KALAYCIOGLU S,BASARAN C,et al. Exploration of potential geothermal fields using GIS–based entropy method:A case study of the Sandikli[J]. Renewable Energy,2024,237:121719.
[29] 冯世进,徐熠,杨俊毅,等. 基于集对–组合赋权的填埋场失稳风险评价方法[J]. 岩土力学,2024,45(7):2129−2139.
FENG Shijin,XU Yi,YANG Junyi,et al. Risk assessment of landfill instability based on set pair–combination weighting[J]. Rock and Soil Mechanics,2024,45(7):2129−2139.
[30] LAI Chengguang,CHEN Xiaohong,CHEN Xiaoyu,et al. A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory[J]. Natural Hazards,2015,77(2):1243−1259.
[31] AL GARNI H Z,AWASTHI A. Solar PV power plant site selection using a GIS–AHP based approach with application in Saudi Arabia[J]. Applied Energy,2017,206:1225−1240.
[32] QIAN Yurong,JEON G. Weight assignment using entropy[J]. International Journal of Multimedia and Ubiquitous Engineering,2016,11(1):353−362.
[33] 陈红光,李晓宁,李晨洋. 基于变异系数熵权法的水资源系统恢复力评价:以黑龙江省2007–2016年水资源情况为例[J]. 生态经济,2021,37(1):179−184.
CHEN Hongguang,LI Xiaoning,LI Chenyang. Resilience evaluation of water resource system based on coefficient of variation–entropy weight method:A case study of water resources in Heilongjiang Province from 2007 to 2016[J]. Ecological Economy,2021,37(1):179−184.
[34] CHEN Yuehong,XU Congcong,GE Yong,et al. A 100 m gridded population dataset of China’s seventh census using ensemble learning and big geospatial data[J]. Earth System Science Data,2024,16(8):3705−3718.
[35] YANG Jie,HUANG Xin. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data,2021,13(8):3907−3925.
[36] 中华人民共和国自然资源部. 地热资源评价方法及估算规程:DZ/T 0331—2020[S]. 北京:中国标准出版社,2020.
[37] ZENG Taorui,JIN Bijing,GLADE T,et al. Assessing the imperative of conditioning factor grading in machine learning–based landslide susceptibility modeling:A critical inquiry[J]. CATENA,2024,236:107732.
[38] 黄钦,谭翠,杨波. 基于XGBoost算法的亚热带地区生态旅游适宜性评价方法研究[J]. 地球信息科学学报,2024,26(2):303−317.
HUANG Qin,TAN Cui,YANG Bo. Research on the evaluation method of ecotourism suitability in subtropical regions based on XGBoost algorithm[J]. Journal of Geo–Information Science,2024,26(2):303−317.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons