•  
  •  
 

Coal Geology & Exploration

Abstract

Objective This study aims to clarify the spherical diffusion patterns of power-law grouts in water-rich sand layers during permeation grouting and their influential factors. To this end, permeation grouting experiments were conducted to gain insights into the quantitative impacts of varying grouting parameters on grout diffusion.Methods Using model experiments on spherical diffusion during permeation grouting, this study analyzed the macroscopic diffusion morphologies and microscopic infilling effects of grouts, as well as the trends of permeation and soil pressures during grouting. Then, based on the spherical diffusion equations for permeation grouting that consider multi-effect coupling, this study analyzed the factors influencing the permeation and diffusion of grouts qualitatively and the theoretical prediction errors of grout diffusion quantitatively. Finally, through range analysis, this study assessed the significance of the impacts of the water-to-cement ratio, physical parameters of sandy soils, and grouting pressure on grout permeation and diffusion.Results and Conclusions The results indicate that the diffusion range of grouts was positively correlated with the water-to-cement ratio of the grouts and the porosity of sandy soils but negatively correlated with the tortuosity of sandy soil. During grouting, the permeation and soil pressures decreased nonlinearly with an increase in the distance from the grouting pipe. Nevertheless, the permeation and soil pressures at the same measurement point increased nonlinearly over time. The time interval of sudden pressure increase was defined. A closer distance from the grouting pipe corresponded to an earlier sudden pressure increase and more significant pressure changes. The theoretical model that considered the multiple effects of grouts, including the time-varying effect of viscosity, tortuosity effect, and uniform infiltration effect, yielded prediction errors of grout diffusion ranges varying from –13.26% to 11.01% compared to the experimental results. The significance of the impacts of grouting parameters on the grout diffusion range decreased in the order of the water-to-cement ratio, sandy soil porosity, and grouting pressure. As a dominant influential factor, the water-to-cement ratio affected the grout diffusion range during grouting by influencing the actual porosity and tortuosity of the sandy soils. The results of this study can serve as a reference for the design of grouting parameters for water-rich sand layers.

Keywords

water-rich sand layer, permeation grouting, multi-factor coupling, power-law slurry, diffusion mechanism

DOI

10.12363/issn.1001-1986.24.12.0786

Reference

[1] 程桦,刘向阳,曹如康,等. 类砂质泥岩常规三轴浆压致裂起裂压力试验研究[J]. 岩土力学,2022,43(10):2655−2664.

CHENG Hua,LIU Xiangyang,CAO Rukang,et al. Experimental research on fracture initiation pressure of conventional triaxial slurry fracturing in similar material of sandy mudstone[J]. Rock and Soil Mechanics,2022,43(10):2655−2664.

[2] 程桦,周瑞鹤,姚直书,等. 厚表土薄基岩凿井突水溃砂井筒破坏治理技术研究[J]. 煤炭科学技术,2021,49(4):176−185.

CHENG Hua,ZHOU Ruihe,YAO Zhishu,et al. Study on shaft damage control technology of water inrush and sand burst in drilling process with thick topsoil and thin bedrock[J]. Coal Science and Technology,2021,49(4):176−185.

[3] 程桦,彭世龙,荣传新,等. 千米深井L型钻孔预注浆加固硐室围岩数值模拟及工程应用[J]. 岩土力学,2018,39(增刊2):274−284.

CHENG Hua,PENG Shilong,RONG Chuanxin,et al. Numerical simulation and engineering application of grouting reinforcement for surrounding rocks of chamber in deep of 1 000 m by L–shaped boreholes[J]. Rock and Soil Mechanics,2018,39(Sup.2):274−284.

[4] 王雪松,程桦,姚直书,等. 富水砂层宾汉浆液柱形渗透扩散模型及其试验研究[J]. 煤田地质与勘探,2024,52(8):124−133.

WANG Xuesong,CHENG Hua,YAO Zhishu,et al. A cylindrical permeation and diffusion model for Bingham grout in water–rich sand layers and its experimental research[J]. Coal Geology & Exploration,2024,52(8):124−133.

[5] 张华磊,涂敏,程桦,等. 薄基岩采场覆岩破断机理及风氧化带整体注浆加固技术[J]. 煤炭学报,2018,43(8):2126−2132.

ZHANG Hualei,TU Min,CHENG Hua,et al. Breaking mechanism of overlying strata under thick unconsolidated layers and integrated grouting reinforcement technology for wind oxidation zone[J]. Journal of China Coal Society,2018,43(8):2126−2132.

[6] MAGHOUS S,SAADA Z,DORMIEUX L,et al. A model for in situ grouting with account for particle filtration[J]. Computers and Geotechnics,2007,34(3):164−174.

[7] SAADA Z,CANOU J,DORMIEUX L,et al. Modelling of cement suspension flow in granular porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29(7):691−711.

[8] 李术才,冯啸,刘人太,等. 砂土介质中颗粒浆液的渗滤系数及加固机制研究[J]. 岩石力学与工程学报,2017,36(增刊2):4220−4228.

LI Shucai,FENG Xiao,LIU Rentai,et al. Study on infiltration coefficient and reinforcing mechanism of grout suspension in sandy soil medium[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(Sup.2):4220−4228.

[9] 张连震. 地铁穿越砂层注浆扩散与加固机理及工程应用[D]. 济南:山东大学,2017.

ZHANG Lianzhen. Study on penetration and reinforcement mechanism of grouting in sand layer disclosed by subway tunnel and its application[D]. Jinan:Shandong University,2017.

[10] 李志鹏,张连震,张庆松,等. 砂层渗透注浆加固效果模型试验研究[J]. 煤炭学报,2018,43(12):3488−3497.

LI Zhipeng,ZHANG Lianzhen,ZHANG Qingsong,et al. Simulation test for permeation grouting reinforcement effect of sand layer[J]. Journal of China Coal Society,2018,43(12):3488−3497.

[11] 钱自卫,姜振泉,曹丽文,等. 弱胶结孔隙介质渗透注浆模型试验研究[J]. 岩土力学,2013,34(1):139−142.

QIAN Ziwei,JIANG Zhenquan,CAO Liwen,et al. Experiment study of penetration grouting model for weakly cemented porous media[J]. Rock and Soil Mechanics,2013,34(1):139−142.

[12] 李慎刚. 砂性地层渗透注浆试验及工程应用研究[D]. 沈阳:东北大学,2010.

LI Shengang. Research on permeation grouting experiment and application in sandy strata[D]. Shenyang:Northeastern University,2010.

[13] 刘向阳,程桦,黎明镜,等. 基于浆液流变性的深埋岩层纵向劈裂注浆理论研究[J]. 岩土力学,2021,42(5):1373−1380.

LIU Xiangyang,CHENG Hua,LI Mingjing,et al. Theoretical research on longitudinal fracture grouting of deep buried strata based on slurry rheology[J]. Rock and Soil Mechanics,2021,42(5):1373−1380.

[14] 刘向阳. 煤矿深部岩层劈裂注浆扩散机理研究[D]. 合肥:合肥工业大学,2021.

LIU Xiangyang. The mechanism of capillary–film water migration in freezing soil and its experimental study[D]. Hefei:Hefei University of Technology,2021.

[15] 杨志全,侯克鹏,梁维,等. 牛顿流体柱–半球面渗透注浆形式扩散参数的研究[J]. 岩土力学,2014,35(增刊2):17−24.

YANG Zhiquan,HOU Kepeng,LIANG Wei,et al. Study of diffusion parameters of Newtonian fluid based on column–hemispherical penetration grouting[J]. Rock and Soil Mechanics,2014,35(Sup.2):17−24.

[16] 杨志全,牛向东,侯克鹏,等. 流变参数时变性幂律型水泥浆液的柱形渗透注浆机制研究[J]. 岩石力学与工程学报,2015,34(7):1415−1425.

YANG Zhiquan,NIU Xiangdong,HOU Kepeng,et al. Columnar diffusion of cement grout with time dependent rheological parameters[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(7):1415−1425.

[17] 路乔,杨智超,杨志全,等. 考虑扩散路径的宾汉姆流体渗透注浆机制[J]. 岩土力学,2022,43(2):385−394.

LU Qiao,YANG Zhichao,YANG Zhiquan,et al. Penetration grouting mechanism of Binham fluid considering diffusion paths[J]. Rock and Soil Mechanics,2022,43(2):385−394.

[18] 杨秀竹,雷金山,夏力农,等. 幂律型浆液扩散半径研究[J]. 岩土力学,2005,26(11):1803−1806.

YANG Xiuzhu,LEI Jinshan,XIA Linong,et al. Study on grouting diffusion radius of exponential fluids[J]. Rock and Soil Mechanics,2005,26(11):1803−1806.

[19] 杨秀竹. 静动力作用下浆液扩散理论与试验研究[D]. 长沙:中南大学,2005.

YANG Xiuzhu. Study on grout diffusion theory and experiments under static or dynamic loading[D]. Changsha:Central South University,2005.

[20] 陈鑫,袁昌. 多孔介质中Bingham型浆液柱状渗透规律研究[J]. 采矿与安全工程学报,2021,38(4):800−809.

CHEN Xin,YUAN Chang. Law of columnar penetration of Bingham type slurry in porous media[J]. Journal of Mining & Safety Engineering,2021,38(4):800−809.

[21] 张庆松,王洪波,刘人太,等. 考虑浆液扩散路径的多孔介质渗透注浆机理研究[J]. 岩土工程学报,2018,40(5):918−924.

ZHANG Qingsong,WANG Hongbo,LIU Rentai,et al. Infiltration grouting mechanism of porous media considering diffusion paths of grout[J]. Chinese Journal of Geotechnical Engineering,2018,40(5):918−924.

[22] WANG Xuesong,CHENG Hua,YAO Zhishu,et al. Theoretical research on grouting in deep loose layers based on the cylindrical diffusion model of radial tube flow[J]. Geofluids,2022,2022(1):1302260.

[23] WANG Xuesong,CHENG Hua,YAO Zhishu,et al. Theoretical research on sand penetration grouting based on cylindrical diffusion model of tortuous tubes[J]. Water,2022,14(7):1028.

[24] BOUCHELAGHEM F. Multi–scale modeling of the permeability evolution of fine sands during cement suspension grouting with filtration[J]. Computers and Geotechnics,2009,36(6):1058−1071.

[25] 朱光轩,张庆松,刘人太,等. 基于渗滤效应的沙层劈裂注浆扩散规律分析及其ALE算法[J]. 岩石力学与工程学报,2017,36(增刊2):4167−4176.

ZHU Guangxuan,ZHANG Qingsong,LIU Rentai,et al. Analysis of fracturing grouting diffusion in sand considering filtration effects and its ALE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(Sup.2):4167−4176.

[26] 李术才,冯啸,刘人太,等. 考虑渗滤效应的砂土介质注浆扩散规律研究[J]. 岩土力学,2017,38(4):925−933.

LI Shucai,FENG Xiao,LIU Rentai,et al. Diffusion of grouting cement in sandy soil considering filtration effect[J]. Rock and Soil Mechanics,2017,38(4):925−933.

[27] 罗晶. 富水砂层地铁车站施工期动态降水技术研究[D]. 长沙:中南大学,2012.

LUO Jing. The research of dynamic dewatering during metro station construction under watered sandy condition[D]. Changsha:Central South University,2012.

[28] 于宙,樊普,胡佳东. 大埋深富水砂层联络通道施工技术[J]. 山西建筑,2023,49(6):167−169.

YU Zhou,FAN Pu,HU Jiadong. Construction technology for depth–buried cross passage in water–rich sandy stratum[J]. Shanxi Architecture,2023,49(6):167−169.

[29] 阮文军. 注浆扩散与浆液若干基本性能研究[J]. 岩土工程学报,2005,27(1):69−73.

RUAN Wenjun. Research on diffusion of grouting and basic properties of grouts[J]. Chinese Journal of Geotechnical Engineering,2005,27(1):69−73.

[30] XIE Bao,CHENG Hua,WANG Xuesong,et al. Theoretical research on diffusion radius of cement–based materials considering the pore characteristics of porous media[J]. Materials,2022,15(21):7763.

[31] 沙飞,李术才,林春金,等. 砂土介质注浆渗透扩散试验与加固机制研究[J]. 岩土力学,2019,40(11):4259−4269.

SHA Fei,LI Shucai,LIN Chunjin,et al. Research on penetration grouting diffusion experiment and reinforcement mechanism for sandy soil porous media[J]. Rock and Soil Mechanics,2019,40(11):4259−4269.

[32] 孔祥言. 高等渗流力学(第3版)[M]. 合肥:中国科学技术大学出版社,2020.

[33] COMITI J,RENAUD M. A new model for determining mean structure parameters of fixed beds from pressure drop measurements:Application to beds packed with parallelepipedal particles[J]. Chemical Engineering Science,1989,44(7):1539−1545.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.