•  
  •  
 

Coal Geology & Exploration

Abstract

Background Water hazards in coal mines frequently cause heavy casualties, severely affecting the safe mining of coal mines. Methods With the continuous advancements in both the construction of real scene 3D views and coal mine intelligentization, this study examined the development of the intelligent geological guarantee system for the Tangjiahui Coal Mine in Inner Mongolia, as well as the prevention and control of water hazards in the Ordovician limestones in the coal mine floor. Accordingly, this study elaborated on enhancing the prevention and control capacity against water hazards in coal mines during the mining cycle of a mining face using a transparent geological model under empowerment based on spatiotemporal information fusion. This study initially elucidated the fundamental concepts of spatiotemporal information and intelligence involved in the prevention and control process of water hazards in coal mines. The prevention and control process was divided into four stages: advance prediction and forecasting, pre-mining investigation of hidden hazards, water hazard control during mining, and post-control real-time monitoring. This study introduced the spatiotemporal detection methods for water hazards at various stages, spatiotemporal registration and synchronization, and spatiotemporal information-based empowerment modes. Accordingly, a comprehensive prevention and control system for water hazards in coal mines was established based on a transparent geological model. Specifically, based on the construction and dynamic updating of a transparent geological model, the frequency and accuracy of prediction and forecasting were improved using technologies including microseismic monitoring and seismic surveys while mining. The boundaries of anomalous zones in the mining face floor were delineated using directional drilling and 3D seismic exploration. Then, cyclic grouting was conducted for anomalous zones with hidden hazards through targeted control using directional long boreholes in wells, along with inter-borehole transient electromagnetic and inter-borehole resistivity methods. Afterward, as the mining face advanced, the hydraulically conductive fractures and changes in the water-yielding capacities in the mining face floor were dynamically monitored using microseismic monitoring combined with the inter-borehole resistivity method. Results and Conclusions The results of this study demonstrate that a 2D/3D integrated transparent prevention and control system for water hazards in coal mines can be developed by integrating the spatiotemporal information of water hazards in various stages with a transparent geological model. This study will provide effective support for the prevention and control of water hazards in the Ordovician limestones in the floor of the Tangjiahui Coal Mine.

Keywords

coal mine intelligentization, construction of a real scene 3D view, intelligent geological guarantee, water hazards in the Ordovician limestones in the mine floor, spatiotemporal detection of water hazards, Tangjiahui Coal Mine in Inner Mongolia

DOI

10.12363/issn.1001-1986.25.02.0090

Reference

[1] 金之钧,张川. 面向碳中和的中国能源转型路径思考[J]. 北京大学学报(自然科学版),2024,60(4):767−774.

JIN Zhijun,ZHANG Chuan. On China’s energy transition pathway towards carbon neutrality[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2024,60(4):767−774.

[2] 刘原奇. 2023–2024年全球煤炭市场研究与趋势分析[J]. 中国煤炭,2024,50(7):164−169.

LIU Yuanqi. Research and development trend analysis of global coal market from 2023 to 2024[J]. China Coal,2024,50(7):164−169.

[3] 贾建称,贾茜,桑向阳,等. 我国煤矿地质保障系统建设30年:回顾与展望[J]. 煤田地质与勘探,2023,51(1):86−106.

JIA Jiancheng,JIA Qian,SANG Xiangyang,et al. Review and prospect of coal mine geological guarantee system in China during 30 years of construction[J]. Coal Geology & Exploration,2023,51(1):86−106.

[4] 李海涛,齐庆新,杜伟升,等. 煤炭开采等地下工程问题的数字岩石力学解决方案[J]. 煤炭科学技术,2024,52(9):150−161.

LI Haitao,QI Qingxin,DU Weisheng,et al. Digital rock mechanics solutions for underground engineering problems such as coal mining[J]. Coal Science and Technology,2024,52(9):150−161.

[5] 王国法,杜毅博,任怀伟,等. 智能化煤矿顶层设计研究与实践[J]. 煤炭学报,2020,45(6):1909−1924.

WANG Guofa,DU Yibo,REN Huaiwei,et al. Top level design and practice of smart coal mines[J]. Journal of China Coal Society,2020,45(6):1909−1924.

[6] 王海军,曹云,王洪磊. 煤矿智能化关键技术研究与实践[J]. 煤田地质与勘探,2023,51(1):44−54.

WANG Haijun,CAO Yun,WANG Honglei. Research and practice on key technologies for intelligentization of coal mine[J]. Coal Geology & Exploration,2023,51(1):44−54.

[7] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295.

CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.

[8] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635.

LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi–attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.

[9] 袁亮,张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报,2020,45(7):2346−2356.

YUAN Liang,ZHANG Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society,2020,45(7):2346−2356.

[10] 袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1−14.

YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1−14.

[11] 王海军,郑三龙,王相业,等. 地质构造隐蔽致灾因素透明化勘查技术:以新疆屯宝煤矿为例[J]. 煤炭科学技术,2024,52(9):173−188.

WANG Haijun,ZHENG Sanlong,WANG Xiangye,et al. Transparent exploration technology for hidden disaster–causing factors of geological structure:Taking Tunbao Coal Mine in Xinjiang as an example[J]. Coal Science and Technology,2024,52(9):173−188.

[12] 谷保泽,代振华,李明星,等. 透明地质保障技术构建方法:以乌海矿区为例[J]. 煤田地质与勘探,2022,50(1):136−143.

GU Baoze,DAI Zhenhua,LI Mingxing,et al. Construction method on transparent geological guarantee technologies:A case study of Wuhai Mining Area[J]. Coal Geology & Exploration,2022,50(1):136−143.

[13] 张瑞,邓红卫,黄永红,等. 矿山水害链构建及孕源断链减灾途径研究[J]. 安全与环境学报,2011,11(3):218−222.

ZHANG Rui,DENG Hongwei,HUANG Yonghong,et al. Study on construction of mine water hazard disaster chain and countermeasures of chain–cutting mitigation from gestation source[J]. Journal of Safety and Environment,2011,11(3):218−222.

[14] 王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181−202.

WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181−202.

[15] 丁震,李浩荡,张庆华. 煤矿灾害智能预警架构及关键技术研究[J]. 工矿自动化,2023,49(4):15−22.

DING Zhen,LI Haodang,ZHANG Qinghua. Research on intelligent hazard early warning architecture and key technologies for coal mine[J]. Journal of Mine Automation,2023,49(4):15−22.

[16] 连会青,晏涛,尹尚先,等. 基于透明水文地质模型的工作面顶板水害预警研究[J]. 煤炭科学技术,2025,53(1):259−271.

LIAN Huiqing,YAN Tao,YIN Shangxian,et al. Research on early warning of roof water inrush in working faces based on a transparent hydrogeological model[J]. Coal Science and Technology,2025,53(1):259−271.

[17] 王国法,庞义辉,李爽,等. 基于煤矿时空多源信息感知的智能安控闭环体系[J]. 矿业安全与环保,2022,49(4):1−11.

WANG Guofa,PANG Yihui,LI Shuang,et al. Intelligent safety closed–loop management and control system based on multi–source information perception in coal mine[J]. Mining Safety & Environmental Protection,2022,49(4):1−11.

[18] 张玉军. 控水采煤技术原理、关键技术及在砂岩含水层下综放开采实践[J]. 煤炭学报,2020,45(10):3380−3388.

ZHANG Yujun. Principle and key technologies of controlled water mining and practice of fully–mechanized mining under soft sandstone aquifer[J]. Journal of China Coal Society,2020,45(10):3380−3388.

[19] 何桥. 基于统一数字底座的煤矿灾害融合管控平台[J]. 工矿自动化,2024,50(11):109−117.

HE Qiao. Coal mine disaster integration management and control platform based on unified digital base[J]. Journal of Mine Automation,2024,50(11):109−117.

[20] 陈军,田海波,高崟,等. 实景三维中国的总体架构与主体技术[J/OL]. 测绘学报,2024:1–20 [2025-04-24]. http://kns.cnki.net/kcms/detail/11.2089.P.20240417.0946.002.html.

CHEN Jun,TIAN Haibo,GAO Yin,et al. China’s national 3D mapping program (3dRGLM):Overall architecture and key technological issues[J/OL]. Acta Geodaetica et Cartographica Sinica,2024:1–20 [2025-04-24]. http://kns.cnki.net/kcms/detail/11.2089.P.20240417.0946.002.html.

[21] 王国法,任怀伟,富佳兴. 煤矿智能化建设高质量发展难题与路径[J]. 煤炭科学技术,2025,53(1):1−18.

WANG Guofa,REN Huaiwei,FU Jiaxing. Challenge and path of high–quality development of coal mine intelligent construction[J]. Coal Science and Technology,2025,53(1):1−18.

[22] 程立海,崔荣国,董瑾,等. 自然资源和国土空间大数据技术应用框架[J]. 地球信息科学学报,2024,26(4):881−897.

CHENG Lihai,CUI Rongguo,DONG Jin,et al. Technical application framework of big data on natural resources and territorial space[J]. Journal of Geo–Information Science,2024,26(4):881−897.

[23] 吴田军,骆剑承,李曼嘉,等. 地理时空数字化底座理论框架构建与应用实践[J]. 地球信息科学学报,2024,26(4):799−830.

WU Tianjun,LUO Jiancheng,LI Manjia,et al. Theoretical framework construction and application practice of the geographic spatiotemporal digital base[J]. Journal of Geo–Information Science,2024,26(4):799−830.

[24] 杨必胜,陈一平,邹勤. 从大模型看测绘时空信息智能处理的机遇和挑战[J]. 武汉大学学报(信息科学版),2023,48(11):1756−1768.

YANG Bisheng,CHEN Yiping,ZOU Qin. Opportunities and challenges of spatiotemporal information intelligent processing of surveying and mapping in the era of large models[J]. Geomatics and Information Science of Wuhan University,2023,48(11):1756−1768.

[25] 夏玉成,孙学阳,苗霖田,等. 智能时代的矿井地质工作展望:矿井开采智能地质保障技术体系架构[J]. 煤田地质与勘探,2025,53(1):64−76.

XIA Yucheng,SUN Xueyang,MIAO Lintian,et al. Prospects for mine geological work in the intelligence age:Architecture of the intelligent geological guarantee technology system for mine exploitation[J]. Coal Geology & Exploration,2025,53(1):64−76.

[26] 王国法,张建中,刘再斌,等. 煤炭绿色开发复杂巨系统数智化技术进展[J]. 煤炭科学技术,2024,52(11):1−16.

WANG Guofa,ZHANG Jianzhong,LIU Zaibin,et al. Progress in digital and intelligent technologies for complex giant systems in green coal development[J]. Coal Science and Technology,2024,52(11):1−16.

[27] 高银贵,孔皖军,安士凯,等. 唐家会矿奥灰水害区域治理试验工程及防控技术[J]. 煤矿安全,2022,53(3):91−95.

GAO Yingui,KONG Wanjun,AN Shikai,et al. Experimental project and prevention and control technology of Ordovician limestone water disaster in Tangjiahui Coal Mine[J]. Safety in Coal Mines,2022,53(3):91−95.

[28] 刘结高,程建远,疏义国,等. 唐家会煤矿透明地质保障系统构建及示范[J]. 煤田地质与勘探,2022,50(1):1−9.

LIU Jiegao,CHENG Jianyuan,SHU Yiguo,et al. Construction and demonstration of the transparent geological guarantee system in Tangjiahui Coal Mine[J]. Coal Geology & Exploration,2022,50(1):1−9.

[29] 高耀全,高银贵,陆自清,等. 基于透明地质的唐家会煤矿奥灰水防治技术[J]. 煤田地质与勘探,2022,50(1):101−108.

GAO Yaoquan,GAO Yingui,LU Ziqing,et al. Prevention and control technology of Ordovician water in Tangjiahui Coal Mine based on transparent geology[J]. Coal Geology & Exploration,2022,50(1):101−108.

[30] 刘经南,郭文飞,郭迟,等. 智能时代泛在测绘的再思考[J]. 测绘学报,2020,49(4):403−414.

LIU Jingnan,GUO Wenfei,GUO Chi,et al. Rethinking ubiquitous mapping in the intelligent age[J]. Acta Geodaetica et Cartographica Sinica,2020,49(4):403−414.

[31] 陈军,刘万增,武昊,等. 智能化测绘的基本问题与发展方向[J]. 测绘学报,2021,50(8):995−1005.

CHEN Jun,LIU Wanzeng,WU Hao,et al. Smart surveying and mapping:fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica,2021,50(8):995−1005.

[32] 张广运,张荣庭,戴琼海,等. 测绘地理信息与人工智能2.0融合发展的方向[J]. 测绘学报,2021,50(8):1096−1108.

ZHANG Guangyun,ZHANG Rongting,DAl Qionghai,et al. The direction of integration surveying and mapping geographic information and artificial intelligence 2.0[J]. Acta Geodaetica et Cartographica Sinica,2021,50(8):1096−1108.

[33] 刘万增,陈军. 时空信息的基本内涵与赋能机理[J]. 地理学报,2024,79(5):1099−1114.

LIU Wanzeng,CHEN Jun. The basic connotation and empowerment mechanism of spatio–temporal information[J]. Acta Geographica Sinica,2024,79(5):1099−1114.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.