•  
  •  
 

Coal Geology & Exploration

Authors

ZHANG Lei, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100028, China; Coalbed Methane Company Limited, PetroChina, Beijing 100095, ChinaFollow
HUANG Li, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100028, China; Coalbed Methane Company Limited, PetroChina, Beijing 100095, ChinaFollow
ZHAO Longmei, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100028, China; Coalbed Methane Company Limited, PetroChina, Beijing 100095, China
WANG Feng, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100028, China; Coalbed Methane Company Limited, PetroChina, Beijing 100095, China
ZHANG Yixin, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100028, China; Coalbed Methane Company Limited, PetroChina, Beijing 100095, China
SHI Shi, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100028, China; Coalbed Methane Company Limited, PetroChina, Beijing 100095, China
ZHANG Wen, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100028, China; Coalbed Methane Company Limited, PetroChina, Beijing 100095, China
ZHAO Haoyang, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100028, China; Coalbed Methane Company Limited, PetroChina, Beijing 100095, China
CHEN Tong, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100028, China; Coalbed Methane Company Limited, PetroChina, Beijing 100095, China
TONG Jiangnan, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100028, China; Coalbed Methane Company Limited, PetroChina, Beijing 100095, China

Abstract

Background The third submember of the second member of the Permian Shanxi Formation (also referred to as the Shan 23 submember) in the Daning-Jixian block along the eastern margin of the Ordos Basin is identified as a primary target layer for tight-sand gas production in the block. In the early stage of the block development, play fairways were initially identified through fundamental studies on provenance areas and sedimentary systems. Accordingly, a gas field with an annual production of 10 × 108 m3 was constructed in the block. However, further exploitation reveals that the sandstones in the Shan 23 submember exhibit a reduced thickness, a decreased scale, and significant differences in the characteristics of sand bodies along different directions of provenance areas. Existing findings are insufficient to effectively guide research on sand body distribution and well placement. This severely constrains subsequent exploitation. Methods Using data from outcrop and core observations, logs, 3D seismic surveys, analyses, and assays of the Daning-Jixian block, this study established a high-resolution sequence stratigraphic framework for the Shan 23 submember. Furthermore, this study conducted a fine-scale investigation of sedimentary microfacies in the Shan 23 submember and determined the origin and distribution of the bottom sandstones in this submember. Results The results indicate that the Shan 23 submember is a part of an incomplete symmetrical cycle dominated by rising semicycles, with bottom sandstones occurring primarily in the lower short-term cycles. The sedimentary system in the Shan 23 submember exhibits a large-scale braided river delta sedimentary system in the north and a relatively small-scale meandering river delta sedimentary system in the south. Moreover, the bottom sandstones in the north and south manifest significantly different delta-front distributary channel microfacies. The paleogeomorphic reconstruction suggests that the distribution of the bottom sandstones in the Shan 23 submember is governed by the paleo-trench in the underlying Taiyuan Formation. This study established a sedimentary pattern indicating that the sand body scale is controlled by both dual provenance areas and accommodation space and that the sandstone enrichment areas are subjected to both paleogeomorphology and sedimentary microfacies. Accordingly, this study identified a sedimentary framework consisting of five primary subaqueous distributary channels in the block. Differentiated well placement was conducted based on the channel distribution characteristics, with horizontal wells deployed in the north and vertical cluster wells in the south. This well placement strategy contributed to remarkable results, significantly enhancing the probability of penetration for sandstones and the gas production of both horizontal wells and vertical cluster wells. Specifically, for the horizontal wells, the probability of penetration and average production increased by 15% and 66.7%, respectively, with a maximum daily production reaching up to 20 × 104 m3; for the vertical cluster wells, the probability of penetration and average production increased by 11% and 45.4%, respectively, with a maximum daily production reaching up to 5 × 104 m3. Conclusions The accurate prediction of the distribution pattern of channel sand bodies with a control mode of dual provenance areas provides significant support for the efficient exploitation of the Shan 23 submember in the Daning-Jixian block while also offering a reference for the production of tight-sand gas under similar geological conditions along the eastern margin of the Ordos Basin.

Keywords

coal measure, tight sandstone, dual provenance areas, sandstone control mode, Daning-Jixian block, differentiated exploitation strategy

DOI

10.12363/issn.1001-1986.25.01.0063

Reference

[1] 余浩杰,王振嘉,李进步,等. 鄂尔多斯盆地长庆气区复杂致密砂岩气藏开发关键技术进展及攻关方向[J]. 石油学报,2023,44(4):698−712.

YU Haojie,WANG Zhenjia,LI Jinbu,et al. Key technological progress and breakthrough direction for the development of complex tight gas reservoirs in Changqing gas field,Ordos Basin[J]. Acta Petrolei Sinica,2023,44(4):698−712.

[2] 杨华,付金华,刘新社,等. 鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J]. 石油勘探与开发,2012,39(3):295−303.

YANG Hua,FU Jinhua,LIU Xinshe,et al. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J]. Petroleum Exploration and Development,2012,39(3):295−303.

[3] 贾爱林,郭智,韩江晨. 鄂尔多斯盆地致密砂岩气高效开发技术及其应用效果[J]. 石油学报,2025,46(1):255−264.

JIA Ailin,GUO Zhi,HAN Jiangchen. Efficient development technologies and application effects of tight sandstone gas in Ordos Basin[J]. Acta Petrolei Sinica,2025,46(1):255−264.

[4] 费世祥,王东旭,林刚,等. 致密砂岩气藏水平井整体开发关键地质技术:以苏里格气田苏东南区为例[J]. 天然气地球科学,2014,25(10):1620−1629.

FEI Shixiang,WANG Dongxu,LIN Gang,et al. The key geological technology for horizontal wells overall development in tight sandstone gas reservoirs:Take the Sudongnan area of Sulige gasfield for an example[J]. Natural Gas Geoscience,2014,25(10):1620−1629.

[5] 卢涛,刘艳侠,武力超,等. 鄂尔多斯盆地苏里格气田致密砂岩气藏稳产难点与对策[J]. 天然气工业,2015,35(6):43−52.

LU Tao,LIU Yanxia,WU Lichao,et al. Challenges to and countermeasures for the production stabilization of tight sandstone gas reservoirs of the Sulige gasfield,Ordos Basin[J]. Natural Gas Industry,2015,35(6):43−52.

[6] 刘忠群. 鄂尔多斯盆地大牛地致密砂岩气田水平井开发气藏工程优化技术[J]. 石油与天然气地质,2016,37(2):261−266.

LIU Zhongqun. Engineering optimization technique of horizontal well development for Daniudi tight sandstone gas field in Ordos Basin[J]. Oil & Gas Geology,2016,37(2):261−266.

[7] 万旸璐,李仲东,彭超,等. 鄂尔多斯盆地大牛地气田山二段致密砂岩储层特征及评价[J]. 矿物岩石,2016,36(3):106−114.

WAN Yanglu,LI Zhongdong,PENG Chao,et al. Reservoir characteristics and evaluation of low porosity and permeability sandstone of member II of Shanxi Formation in Daniudi gas field,Ordos Basin[J]. Journal of Mineralogy and Petrology,2016,36(3):106−114.

[8] 罗东明,陈舒薇,张广权. 大牛地气田上古生界沉积相与天然气富集规律的再认识[J]. 石油与天然气地质,2011,32(3):368−374.

LUO Dongming,CHEN Shuwei,ZHANG Guangquan. New understandings of the Upper Paleozoic sedimentary facies and gas accumulation patterns in Daniudi gas field[J]. Oil & Gas Geology,2011,32(3):368−374.

[9] 蒙晓灵,张宏波,冯强汉,等. 鄂尔多斯盆地神木气田二叠系太原组天然气成藏条件[J]. 石油与天然气地质,2013,34(1):37−41.

MENG Xiaoling,ZHANG Hongbo,FENG Qianghan,et al. Gas accumulation conditions of the Permian Taiyuan Formation in Shenmu gas field,Ordos Basin[J]. Oil & Gas Geology,2013,34(1):37−41.

[10] 朱光辉,季洪泉,米洪刚,等. 神府深部煤层气大气田的发现与启示[J]. 煤田地质与勘探,2024,52(8):12−21.

ZHU Guanghui,JI Hongquan,MI Honggang,et al. Discovery of a large gas field of deep coalbed methane in the Shenfu block and its implications[J]. Coal Geology & Exploration,2024,52(8):12−21.

[11] 付金华,范立勇,刘新社,等. 苏里格气田成藏条件及勘探开发关键技术[J]. 石油学报,2019,40(2):240−256.

FU Jinhua,FAN Liyong,LIU Xinshe,etal. Gas accumulation conditions and key exploration & development technologies in Sulige gas field[J]. Acta Petrolei Sinica,2019,40(2):240−256.

[12] 郭彤楼,熊亮,杨映涛,等. 从储层、烃源岩到输导体勘探:以四川盆地须家河组致密砂岩气为例[J]. 石油学报,2024,45(7):1078−1091.

GUO Tonglou,XIONH Liang,YANG Yingtao,et al. From reservoir,source to carrier beds exploration:A case study of tight sandstone gas in Xujiahe Formation,Sichuan Basin[J]. Acta Petrolei Sinica,2024,45(7):1078−1091.

[13] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173−187.

ZOU Caineng,ZHU Rukai,WU Songtao,et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations:Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica,2012,33(2):173−187.

[14] 马新华,贾爱林,谭健,等. 中国致密砂岩气开发工程技术与实践[J]. 石油勘探与开发,2012,39(5):572−579.

MA Xinhua,JIA Ailin,TAN Jian,et al. Tight sand gas development technologies and practices in China[J]. Petroleum Exploration and Development,2012,39(5):572−579.

[15] 曾凡辉,郭建春,刘恒,等. 致密砂岩气藏水平井分段压裂优化设计与应用[J]. 石油学报,2013,34(5):959−968.

ZENG Fanhui,GUO Jianchun,LIU Heng,et al. Optimization design and application of horizontal well staged fracturing in tight gas reservoirs[J]. Acta Petrolei Sinica,2013,34(5):959−968.

[16] 赵靖舟,付金华,姚泾利,等. 鄂尔多斯盆地准连续型致密砂岩大气田成藏模式[J]. 石油学报,2012,33(增刊1):37−52.

ZHAO Jingzhou,FU Jinhua,YAO Jingli,et al. Quasi–continuous accumulation model of large tight sandstone gas field in Ordos Basin[J]. Acta Petrolei Sinica,2012,33(Sup.1):37−52.

[17] 席胜利,刘新社,任军峰,等. 鄂尔多斯盆地风险勘探领域油气成藏认识新进展与勘探潜力[J]. 中国石油勘探,2023,28(3):34−48.

XI Shengli,LIU Xinshe,REN Junfeng,et al. New understanding of hydrocarbon accumulation and exploration potential in risk exploration field in Ordos Basin[J]. China Petroleum Exploration,2023,28(3):34−48.

[18] 李玲香,谷团,弓虎军,等. 鄂尔多斯盆地东南部太原组顶界地层厘定:来自宜川地区山西组、太原组碎屑锆石U–Pb年代学的约束[J/OL]. 沉积学报,2024:1–19 [2024-01-18]. https://link.cnki.net/doi/10.14027/j.issn.1000–0550.2023.137

LI Lingxiang,GU Tuan,GONG Hujun,et al. Determination of the top boundary strata of the Taiyuan Formation in the southeastern Ordos Basin:Constrainted by U–Pb geochronology of the Shanxi Formation–Taiyuan Formation in the Yichuan area[J/OL]. Acta Sedimentologica Sinica,2024:1–19 [2024-01-18]. https://link.cnki.net/doi/10.14027/j.issn.1000–0550.2023.137.

[19] 师展,赵靖舟,孙雄伟,等. 鄂尔多斯盆地东南部上古生界煤系烃源岩特征及生烃潜力评价[J]. 天然气地球科学,2023,34(9):1612−1626.

SHI Zhan,ZHAO Jingzhou,SUN Xiongwei,et al. Characteristics and hydrocarbon generation potential of Upper Paleozoic coal measure source rocks in the southeastern Ordos Basin[J]. Natural Gas Geoscience,2023,34(9):1612−1626.

[20] 王香增,周进松. 鄂尔多斯盆地东南部下二叠统山西组二段物源体系及沉积演化模式[J]. 天然气工业,2017,37(11):9−17.

WANG Xiangzeng,ZHOU Jinsong. Provenance system and sedimentary evolution model of the second Member of Lower Permian Shanxi Fm in the southeastern Ordos Basin[J]. Natural Gas Industry,2017,37(11):9−17.

[21] 李克永,李文厚,宇振昆,等. 鄂尔多斯盆地二叠系盒8期源–汇系统时空耦合控砂机制[J]. 西北大学学报(自然科学版),2020,50(2):183−192.

LI Keyong,LI Wenhou,YU Zhenkun et al. Spatial-temporal coupling sand control mechanism of permian source-to-sink system in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition),2020,50(2):183−192.

[22] 陈全红,李文厚,刘昊伟,等. 鄂尔多斯盆地上石炭统–中二叠统砂岩物源分析[J]. 古地理学报,2009,11(6):629−640.

CHEN Quanhong,LI Wenhou,LIU Haowei,et al. Provenance analysis of sandstone of the Upper Carboniferous to Middle Permian in Ordos Basin[J]. Journal of Palaeogeography,2009,11(6):629−640.

[23] 窦伟坦,侯明才,董桂玉. 鄂尔多斯盆地北部山西组–下石盒子组物源分析[J]. 天然气工业,2009,29(3):25−28.

DOU Weitan,HOU Mingcai,DONG Guiyu. Provenance analysis of the Upper Paleozoic Shanxi to Lower Shihezi formations in north Ordos Basin[J]. Natural Gas Industry,2009,29(3):25−28.

[24] 陈全红,李文厚,胡孝林,等. 鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析[J]. 地质学报,2012,86(7):1150−1162.

CHEN Quanhong,LI Wenhou,HU Xiaolin,et al. Tectonic setting and provenance analysis of Late Paleozoic sedimentary rocks in the Ordos Basin[J]. Acta Geologica Sinica,2012,86(7):1150−1162.

[25] 郭艳琴,赵灵生,郭彬程,等. 鄂尔多斯盆地及周缘地区下二叠统沉积特征[J]. 古地理学报,2021,23(1):65−80.

GUO Yanqin,ZHAO Lingsheng,GUO Bincheng,et al. Sedimentary characteristics of the Lower Permian in Ordos Basin and its adjacent areas[J]. Journal of Palaeogeography (Chinese Edition),2021,23(1):65−80.

[26] 赵龙梅,吴和源,黄力,等. 鄂尔多斯盆地东缘大宁–吉县区块及邻区山西组山2段物源分析[J]. 西北地质,2023,56(5):322−331.

ZHAO Longmei,WU Heyuan,HUANG Li,et al. Material source analysis of Daning–Jixian exploration area and its adjacent Shan–2 Member in the eastern margin of Ordos Basin[J]. Northwestern Geology,2023,56(5):322−331.

[27] 孙乐,于兴河,蒋锐,等. 鄂尔多斯盆地大宁–吉县区块山2段沉积特征与砂体展布研究[C]//第31届全国天然气学术年会(2019)论文集(01地质勘探). 合肥,2019:608–621.

[28] 陈晶,黄文辉,伊硕. 鄂尔多斯盆地南部煤系地层砂岩储层特征及其影响因素[J]. 大庆石油地质与开发,2022,41(4):31−43.

CHEN Jing,HUANG Wenhui,YI Shuo. Characteristics of sandstone reservoir and its influencing factors of coal strata in south Ordos Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2022,41(4):31−43.

[29] 张稳,张雷,黄力,等. 低勘探程度区煤系致密气水平井地质导向技术及应用:以DJ–P37井区为例[J]. 煤田地质与勘探,2022,50(9):171−180.

ZHANG Wen,ZHANG Lei,HUANG Li,et al. Geosteering technology and application in horizontal wells for coal measure tight gas reservoirs in the areas of low exploration degree:Taking DJ–P37 bore field as an example[J]. Coal Geology & Exploration,2022,50(9):171−180.

[30] 孙雄伟,张枫,张宝权,等. 煤系地层致密气薄储层地震预测方法:以鄂尔多斯盆地大宁–吉县区块为例[J]. 天然气地球科学,2022,33(7):1165−1174.

SUN Xiongwei,ZHANG Feng,ZHANG Baoquan,et al. Seismic prediction method for tight gas thin reservoir in coal measure strata:Taking Daning–Jixian Block in Ordos Basin as an example[J]. Natural Gas Geoscience,2022,33(7):1165−1174.

[31] 马世忠,张永清. 应用遥感信息图像研究现代水下分流河道河流类型[J]. 地学前缘,2012,19(2):24−31.

MA Shizhong,ZHANG Yongqing. Research on the channel pattern of present subaqueous distributary channel by remote sensing image[J]. Earth Science Frontiers,2012,19(2):24−31.

[32] 付晶,吴胜和,王哲,等. 湖盆浅水三角洲分流河道储层构型模式:以鄂尔多斯盆地东缘延长组野外露头为例[J]. 中南大学学报(自然科学版),2015,46(11):4174−4182.

FU Jing,WU Shenghe,WANG Zhe,et al. Architecture model of shallow–water delta distributary channel in lake basin:A case study of the Yanchang Formation outcrops in the eastern margin of Ordos Basin[J]. Journal of Central South University (Science and Technology),2015,46(11):4174−4182.

[33] 宗廷博,陈德照,杨頔,等. 鄂尔多斯盆地杭锦旗西部山西组致密砂岩储层特征及物性控制因素[J]. 天然气地球科学,2024,35(4):608−622.

ZONG Tingbo,CHEN Dezhao,YANG Di,et al. Tight sandstone reservoir characteristics and physical property control factors of Shanxi Formation in western Hangjinqi,Ordos Basin[J]. Natural Gas Geoscience,2024,35(4):608−622.

[34] 黄建松,郑杰,宋翔,等. 鄂尔多斯盆地北岔沟砂岩沉积特征及其对天然气成藏的控制作用[J]. 古地理学报,2022,24(4):680−696.

HUANG Jiansong,ZHENG Jie,SONG Xiang,et al. Sedimentary characteristics of Beichagou sandstone in the Lower Permian Shanxi Formation in Ordos Basin and its effects on natural gas accumulation[J]. Journal of Palaeogeography (Chinese Edition),2022,24(4):680−696.

[35] 杨勇,雷卞军,冯永玖,等. 鄂尔多斯盆地子洲及邻区山西组二段高分辨率层序地层和煤沉积模式[J]. 石油与天然气地质,2013,34(1):58−67.

YANG Yong,LEI Bianjun,FENG Yongjiu,et al. High–resolution sequence stratigraphy and coal sedimentary modes of Member 2 of Shanxi Formation in Zizhou and its adjacent areas,the Ordos Basin[J]. Oil & Gas Geology,2013,34(1):58−67.

[36] 鲁静,邵龙义,孙斌,等. 鄂尔多斯盆地东缘石炭–二叠纪煤系层序–古地理与聚煤作用[J]. 煤炭学报,2012,37(5):747−754.

LU Jing,SHAO Longyi,SUN Bin,et al. Sequence–paleogeography and coal accumulation of Carboniferous–Permian coal measures in the eastern Ordos Basin[J]. Journal of China Coal Society,2012,37(5):747−754.

[37] 马帅,王永诗,王学军,等. 华北东部石炭纪–二叠纪沉积充填过程及其对物源区构造演化的响应[J]. 油气地质与采收率,2023,30(4):1−20.

MA Shuai,WANG Yongshi,WANG Xuejun,et al. Carboniferous-Permian sedimentary filling process in eastern North China and its response to tectonic evolution of provenance area[J]. Petroleum Geology and Recovery Efficiency,2023,30(4):1−20

[38] 屈红军,马强,高胜利,等. 鄂尔多斯盆地东南部二叠系物源分析[J]. 地质学报,2011,85(6):979−986.

QU Hongjun,MA Qiang,GAO Shengli,et al. On provenance of the Permian in the southeastern Ordos Basin[J]. Acta Geologica Sinica,2011,85(6):979−986.

[39] 屈红军,韩星,陈硕,等. 鄂尔多斯盆地东北部上古生界碎屑锆石测年及盆山耦合探讨[J]. 大地构造与成矿学,2020,44(3):501−513.

QU Hongjun,HAN Xing,CHEN Shuo,et al. U-Pb Dating of Detrital Zircon from the Upper Paleozoic Clastic Rocks and Basin-mountain Coupling of the Northeastern Ordos Basin[J]. Geotectonicet Metallogenia,2020,44(3):501−513.

[40] 张建新,于胜尧,孟繁聪. 北秦岭造山带的早古生代多期变质作用[J]. 岩石学报,2011,27(4):1179−1190.

ZHANG Jianxin,YU Shengyao,MENG Fancong. Ployphase Early Paleozoic metamorphism in the northern Qinling orogenic belt[J]. Acta Petrologica Sinica,2011,27(4):1179−1190.

[41] 王盟,罗静兰,李杪,等. 鄂尔多斯盆地东胜地区砂岩型铀矿源区及其构造背景分析:来自碎屑锆石U–Pb年龄及Hf同位素的证据[J]. 岩石学报,2013,29(8):2746−2758.

WANG Meng,LUO Jinglan,LI Miao,et al. Provenance and tectonic setting of sandstone–type uranium deposit in Dongsheng area,Ordos Basin:Evidence from U–Pb age and Hf isotopes of detrital zircons[J]. Acta Petrologica Sinica,2013,29(8):2746−2758.

[42] 武瑾,王红岩,施振生,等. 海陆过渡相黑色页岩优势岩相类型及成因机制:以鄂尔多斯盆地东缘二叠系山西组为例[J]. 石油勘探与开发,2021,48(6):1137−1149.

WU Jin,WANG Hongyan,SHI Zhensheng,et al. Dominant lithofacies types and genetic mechanism of marine continental transitional black shale:A case study of Permian Shanxi Formation in the eastern margin of Ordos Basin[J]. Petroleum exploration and development,2021,48(6):1137−1149.

[43] 张雷,赵培华,侯伟,等. 鄂尔多斯盆地东缘山西组山23亚段泥页岩地球化学特征与沉积环境[J]. 天然气地球科学,2023,34(2):181−193.

ZHANG Lei,ZHAO Peihua,HOU Wei,et al. Geochemical characteristics and sedimentary environment of shales in the Shan 23 sub member of the Shanxi Formation in the eastern margin of the Ordos Basin[J]. Natural Gas Geoscience,2023,34(2):181−193.

[44] 李丹,赵伟波,胡琮,等. 鄂尔多斯地区南部早二叠世山西组源–汇系统差异与构造–沉积格局[J/OL]. 沉积学报,2023:1–22 [2023-10-16]. https://link.cnki.net/doi/10.14027/j.issn.1000–0550.2023.093

LI Dan,ZHAO Weibo,HU Cong,et al. Source–to–sink system differences and structure–sedimentary pattern of the Early Permian Shanxi Formation in the southern Ordos region[J/OL]. Acta Sedimentologica Sinica,2023:1–22 [2023-10-16]. https://link.cnki.net/doi/10.14027/j.issn.1000–0550.2023.093.

[45] 赵晨帆,于兴河,付超,等. 曲流河三角洲–辫状河三角洲控制因素及演化过程探讨[J]. 沉积学报,2019,37(4):768−784.

ZHAO Chenfan,YU Xinghe,FU Chao,et al. Control factors and evolution progress of depositional system transition from meandering river delta to braided river delta:Case study of Shan 2 Member to He 8 Member,Ordos Basin[J]. Acta Sedimentologica Sinica,2019,37(4):768−784.

[46] 吴雪超,汤军,任来义,等. 鄂尔多斯盆地延长天然气探区山西组山2段成岩相及优质储层研究[J]. 天然气地球科学,2012,23(6):1004–1010.

WU Xuechao,TANG Jun,REN Laiyi,et al Diagenetic facies and high-quality reservoirs of Shan 2 Member of Shanxi Formation in Yanchang natural gas exploration area,Ordos Basin[J]. Natural gas Geosciences,2012,23(6):1004–1010.

[47] 闫新义,李艳霞,刘洁琪. 鄂尔多斯盆地山西组致密砂岩成岩作用研究[C]//2015全国沉积学大会论文集. 2015:365–366.

[48] 王存武,马东旭,田兵,等. 鄂尔多斯盆地LX地区山西组储层成岩演化及成岩相研究[J]. 沉积学报,2016,34(3):594–605.

WANG Cunwu,MA Dongxu,TIAN Bing,et al. Diagenetic evolution and diagenetic facies of Shanxi Formation reservoir in LX area of Ordos Basin [J]. Acta sedimentologica Sinica,2016,34(3):594–605.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.