Coal Geology & Exploration
Abstract
Objective CO2 injection and geologic sequestration in deep saline aquifers as underground spatial resources represents an important means of achieving the targets of greenhouse gas emission reduction and carbon neutrality. Current assessments of the siting and potential for geologic CO2 sequestration in saline aquifers focus primarily on the macroscopic basin and regional scales, with the assessment indicator system scarcely accounting for the suitability of low-porosity and low-permeability strata. Methods Using data from 192 wells in the Yusheng area, Ordos Basin, this study conducted the division and correlation of intervals bearing no hydrocarbon, carried out lithologic and physical interpretations of these intervals, and identified aquifer reservoirs. Then, this study investigated dominant aquifer reservoirs, including stratigraphic characteristics, sealing performance of cap rocks, sequestration potential, and surface environment. Accordingly, this study developed and quantified assessment indicators for the siting of geologic CO2 sequestration in saline aquifers that account for the developmental characteristics of low-porosity, low-permeability reservoirs. Results and Conclusions The proposed assessment indicator system consists of three first-level indicators, namely geologic sequestration, sequestration capacity, and socio-environmental conditions. These indicators, consisting of second-level indicators, are used to characterize the injectivity, sequestration capacity, and surface feasibility, respectively of saline aquifers. The second-level indicators of the geologic sequestration conditions include reservoir lithology, reservoir thickness, porosity, and permeability; those of the sequestration capacity conditions encompass the sealing performance of cap rocks, burial depth, sequestration potential, and faults, and those of the socio-environmental conditions comprise the current status of underground resource development, land use conditions, collapse and disaster areas, source-sink matching, and public acceptance. The assessment system for the target area- and site-scale siting of CCS projects, established based on the current low-porosity and low-permeability sandstone reservoirs in the Ordos Basin, will provide a basis and guide for the implementation of the industrial projects of geologic CO2 sequestration in saline aquifers.
Keywords
CCUS, geologic CO2 sequestration in saline aquifers, site selection criteria, low-porosity and low-permeability, quantitative evaluation
DOI
10.12363/issn.1001-1986.24.08.0528
Recommended Citation
MOU Yu, WANG Haofan, Shaanxi Key Laboratory for Carbon Neutral Technology, Carbon Neutrality College (Yulin), Northwest University, Xi’an 710069, China Xuejun,
et al.
(2025)
"Assessment indicator system for siting of geologic CO2 sequestration in low-porosity and low-permeability saline aquifers: A case study of the Ordos Basin,"
Coal Geology & Exploration: Vol. 53:
Iss.
3, Article 9.
DOI: 10.12363/issn.1001-1986.24.08.0528
Available at:
https://cge.researchcommons.org/journal/vol53/iss3/9
Reference
[1] RAI V,VICTOR D G,THURBER M C. Carbon capture and storage at scale:Lessons from the growth of analogous energy technologies[J]. Energy Policy,2010,38(8):4089−4098.
[2] MA Jinfeng,LI Lin,WANG Haofan,et al. Carbon capture and storage:History and the road ahead[J]. Engineering,2022,14:33−43.
[3] 刘世奇,皇凡生,杜瑞斌,等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探,2023,51(2):158−174.
LIU Shiqi,HUANG Fansheng,DU Ruibin,et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J]. Coal Geology & Exploration,2023,51(2):158−174.
[4] BACHU S. Sequestration of CO2 in geological media:Criteria and approach for site selection in response to climate change[J]. Energy Conversion and Management,2000,41(9):953−970.
[5] BACHU S,SHAW J. Evaluation of the CO2 sequestration capacity in Alberta’s oil and gas reservoirs at depletion and the effect of underlying aquifers[J]. Journal of Canadian Petroleum Technology,2003,42(9):51−61.
[6] OLDENBURG C M. Screening and ranking framework for geologic CO2 storage site selection on the basis of health,safety,and environmental risk[J]. Environmental Geology,2008,54(8):1687−1694.
[7] GRATALOUP S,BONIJOLY D,BROSSE E,et al. A site selection methodology for CO2 underground storage in deep saline aquifers:Case of the Paris Basin[J]. Energy Procedia,2009,1(1):2929−2936.
[8] RODOSTA T D,LITYNSKI J T,PLASYNSKI S I,et al. U. S. Department of energy’s site screening,site selection,and initial characterization for storage of CO2 in deep geological formations[J]. Energy Procedia,2011,4:4664−4671.
[9] MIDDLETON R S,YAW S P,HOOVER B A,et al. SimCCS:An open–source tool for optimizing CO2 capture,transport,and storage infrastructure[J]. Environmental Modelling and Software,2020,124:104560.
[10] MIDDLETON R S,CHEN Bailian,HARP D R,et al. Great SCO2T! Rapid tool for carbon sequestration science,engineering,and economics[J]. Applied Computing and Geosciences,2020,7:100035.
[11] KIM T W,CALLAS C,SALTZER S D,et al. Assessment of oil and gas fields in California as potential CO2 storage sites[J]. International Journal of Greenhouse Gas Control,2022,114:103579.
[12] LENG Jianqiao,BUMP A,HOSSEINI S A,et al. A comprehensive review of efficient capacity estimation for large–scale CO2 geological storage[J]. Gas Science and Engineering,2024,126:205339.
[13] 刁玉杰,张森琦,郭建强,等. 深部咸水层CO2地质储存地质安全性评价方法研究[J]. 中国地质,2011,38(3):786−792.
DIAO Yujie,ZHANG Senqi,GUO Jianqiang,et al. Geological safety evaluation method for CO2 geological storage in deep saline aquifer[J]. Geology in China,2011,38(3):786−792.
[14] 曹默雷,陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报,2022,96(5):1868−1882.
CAO Molei,CHEN Jianping. The site selection geological evaluation of the CO2 storage of the deep saline aquifer[J]. Acta Geologica Sinica,2022,96(5):1868−1882.
[15] 王紫剑,唐玄,荆铁亚,等. 中国年封存量百万吨级CO2地质封存选址策略[J]. 现代地质,2022,36(5):1414−1431.
WANG Zijian,TANG Xuan,JING Tieya,et al. Site selection strategy for an annual million–ton scale CO2 geological storage in China[J]. Geoscience,2022,36(5):1414−1431.
[16] QI Shengwen,ZHENG Bowen,WANG Zan,et al. Geological evaluation for the carbon dioxide geological utilization and storage (CGUS) site:A review[J]. Science China Earth Sciences,2023,66(9):1917−1936.
[17] 祁生文,郑博文,路伟,等. 二氧化碳地质封存选址指标体系及适宜性评价研究[J]. 第四纪研究,2023,43(2):523−550.
QI Shengwen,ZHENG Bowen,LU Wei,et al. Investigation of indexes system and suitability evaluation for carbon dioxide geological storage site[J]. Quaternary Sciences,2023,43(2):523−550.
[18] AKAI T,KURIYAMA T,KATO S,et al. Numerical modelling of long–term CO2 storage mechanisms in saline aquifers using the Sleipner benchmark dataset[J]. International Journal of Greenhouse Gas Control,2021,110:103405.
[19] LEE S Y,SWAGER L,PEKOT L,et al. Study of operational dynamic data in Aquistore project[J]. International Journal of Greenhouse Gas Control,2018,76:62−77.
[20] TAWIAH P,DUER J,BRYANT S L,et al. CO2 injectivity behaviour under non–isothermal conditions:Field observations and assessments from the Quest CCS operation[J]. International Journal of Greenhouse Gas Control,2020,92:102843.
[21] 郭艳琴,李文厚,郭彬程,等. 鄂尔多斯盆地沉积体系与古地理演化[J]. 古地理学报,2019,21(2):293−320.
GUO Yanqin,LI Wenhou,GUO Bincheng,et al. Sedimentary systems and palaeogeography evolution of Ordos Basin[J]. Journal of Palaeogeography (Chinese Edition),2019,21(2):293−320.
[22] LI Qi,LIU Guizhen,LIU Xuehao,et al. Application of a health,safety,and environmental screening and ranking framework to the Shenhua CCS project[J]. International Journal of Greenhouse Gas Control,2013,17:504−514.
[23] 张儒,马炯. 榆林气田石英砂岩气层的测井方法识别评价研究[J]. 辽宁石油化工大学学报,2019,39(4):65−71.
ZHANG Ru,MA Jiong. Identification and evaluation of logging methods for quartz sandstone gas reservoir in Yulin Gas Field[J]. Journal of Liaoning Shihua University,2019,39(4):65−71.
[24] 张涛,巩肖可,黄朝,等. 鄂尔多斯盆地神木气田太原组低品质气藏储层微观特征及形成机理[J]. 石油实验地质,2024,46(1):32−45.
ZHANG Tao,GONG Xiaoke,HUANG Chao,et al. Micro characteristics and formation mechanism of low–quality gas reservoirs in Taiyuan Formation of Shenmu Gas Field,Ordos Basin[J]. Petroleum Geology & Experiment,2024,46(1):32−45.
[25] 张小莉,李亚军,冯淳,等. 榆林–神木地区CO2咸水层封存甜点优选[J]. 西北大学学报(自然科学版),2023,53(6):900−912.
ZHANG Xiaoli,LI Yajun,FENG Chun,et al. Sweet spot selection in CO2 saline aquifers geological storage,Yulin–Shenmu Area[J]. Journal of Northwest University (Natural Science Edition),2023,53(6):900−912.
[26] 梁积伟. 鄂尔多斯盆地侏罗系沉积体系和层序地层学研究[D]. 西安:西北大学,2007.
LIANG Jiwei. Research on sedimentary system and sequence stratigraphy of the Jurassic in Ordos Basin[D]. Xi’an:Northwest University,2007.
[27] 康宇龙,汪心雯,李超跃,等. 化子坪长6储层长岩心CO2驱替实验及数值模拟评价[J]. 地球学报,2024,45(2):243−251.
KANG Yulong,WANG Xinwen,LI Chaoyue,et al. Long core testing and numerical simulation investigations of CO2–EOR and geological storage in the 6th section of the Yanchang Formation in the Huaziping Oil Reservoir[J]. Acta Geoscientica Sinica,2024,45(2):243−251.
[28] WANG Daxing,WANG Haofan,MA Jinfeng,et al. Fluids discrimination by ray–path elastic impedance inversion:A successful case from Sulige tight gas field[J]. Applied Geophysics,2019,16(4):218−232.
[29] WYLLIE M R J,GREGORY A R,GARDNER L W. Elastic wave velocities in heterogeneous and porous media[J]. Geophysics,1956,21(1):41−70.
[30] 孙玉景,周立发,焦尊生. 鄂尔多斯盆地奥陶系马家沟组CO2封存的地质条件研究[J]. 西北大学学报(自然科学版),2018,48(3):404−412.
SUN Yujing,ZHOU Lifa,JIAO Zunsheng. The geological conditions study of CO2 sequestration of Ordovician Majiagou Formation in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition),2018,48(3):404−412.
[31] 陈博文,王锐,李琦,等. CO2地质封存盖层密闭性研究现状与进展[J]. 高校地质学报,2023,29(1):85−99.
CHEN Bowen,WANG Rui,LI Qi,et al. Status and advances of research on caprock sealing properties of CO2 geological storage[J]. Geological Journal of China Universities,2023,29(1):85−99.
[32] 柏明星,张志超,白华明,等. 二氧化碳地质封存系统泄漏风险研究进展[J]. 特种油气藏,2022,29(4):1−11.
BAI Mingxing,ZHANG Zhichao,BAI Huaming,et al. Progress in leakage risk study of CO2 geosequestration system[J]. Special Oil & Gas Reservoirs,2022,29(4):1−11.
[33] 高鹏博,吕丁友,黄江波,等. 砂–泥互层盖层垂向封闭性定量评价[J]. 能源与环保,2021,43(11):115−120.
GAO Pengbo,LYU Dingyou,HUANG Jiangbo,et al. Quantitative evaluation of vertical sealing of sand–mud interbed caprock[J]. China Energy and Environmental Protection,2021,43(11):115−120.
[34] SONG Juan,ZHANG Dongxiao. Comprehensive review of caprock–sealing mechanisms for geologic carbon sequestration[J]. Environmental Science & Technology,2013,47(1):9−22.
[35] MICHAEL K,GOLAB A,SHULAKOVA V,et al. Geological storage of CO2 in saline aquifers:A review of the experience from existing storage operations[J]. International Journal of Greenhouse Gas Control,2010,4(4):659−667.
[36] RUBIN E S. Special report on carbon dioxide capture and storage[M]. Intergovernmental Panel on Climate Change,2005.
[37] 任战利,张盛,高胜利,等. 鄂尔多斯盆地构造热演化史及其成藏成矿意义[J]. 中国科学 D辑:地球科学,2007,37(增刊1):23−32.
[38] BERT M,OGUNLADE D,HELEEN DE C,et al. IPCC special report on carbon dioxide capture and storage[M]. New York:Cambridge University Press,2005.
[39] BACHU S,BONIJOLY D,BRADSHAW J,et al. CO2 storage capacity estimation:Methodology and gaps[J]. International Journal of Greenhouse Gas Control,2007,1(4):430−443.
[40] GOODMAN A,HAKALA A,BROMHAL G,et al. U. S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control,2011,5(4):952−965.
[41] XU Haibin. Calculation of CO2 acoustic properties using Batzle–Wang equations[J]. Geophysics,2006,71(2):21−23.
[42] BATZLE M,WANG Zhijing. Seismic properties of pore fluids[J]. Geophysics,1992,57(11):1396−1524.
[43] JUANES R,HAGER B H,HERZOG H J. No geologic evidence that seismicity causes fault leakage that would render large–scale carbon capture and storage unsuccessful[J]. Earth,Atmospheric,and Planetary Sciences,2012,109(52):E3623.
[44] VILARRASA V,CARRERA J. Geologic carbon storage is unlikely to trigger large earthquakes and reactive faults through which CO2 could leak[J]. Environmental Sciences,2015,112(19):5938−5943.
[45] FEITZ A,TERTYSHNIKOV K,PEVZNER R,et al. The CO2CRC Otway shallow CO2 controlled release experiment:Preparation for Phase 2[J]. Energy Procedia,2018,154:145−150.
[46] ZOBACK M D,GORELICK S M. Earthquake triggering and large–scale geologic storage of carbon dioxide[J]. Proceedings of the National Academy of Sciences,2012,109(26):10164−10168.
[47] 李甫成,张杨,张晓娟,等. 深部咸水层CO2地质储存适宜性评价方法研究[J]. 冰川冻土,2014,36(3):649−660.
LI Fucheng,ZHANG Yang,ZHANG Xiaojuan,et al. Suitability evaluation method of CO2 geological sequestration in deep saline aquifers[J]. Journal of Glaciology and Geocryology,2014,36(3):649−660.
[48] 桑树勋,刘世奇,朱前林,等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报,2023,48(7):2700−2716.
SANG Shuxun,LIU Shiqi,ZHU Qianlin,et al. Research progress on technical basis of synergy between CO2 geological storage potential and energy resources[J]. Journal of China Coal Society,2023,48(7):2700−2716.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons