•  
  •  
 

Coal Geology & Exploration

Abstract

Objective Shales in the Lower Cambrian Qiongzhusi Formation within the Upper Yangtze region preserve critical information about primitive oceans. Furthermore, these shales serve as vital source rocks and reservoirs, having demonstrated considerable potential for shale gas exploration. Methods Using seismic, borehole, and outcrop data, this study investigated the shale strata and their distribution in the Qiongzhusi Formation through comparative analysis. Accordingly, the sweet-spot interval was determined. Results and conclusions The results indicate that the Lower Cambrian Qiongzhusi Formation in the Upper Yangtze region can be divided into the first and second members (also referred to as the Qiong 1 and 2 members, respectively), with the former consisting of Q1-1 to Q1-4 sub-members and the latter comprising Q2-1 to Q2-4 sub-members. The Maidiping Formation and the Qiong 1 Member predominantly occur within the Deyang-Anyue intracratonic rift, while the Qiong 2 Member is extensively distributed both inside and outside the rift. Within the rift, the west and east sides of the Maidiping Formation - Qiong 1 Member terminates at the limestone of the Dengying Formation, with the west side gradually thinning while the east side pinching out rapidly. In the north-south direction, the Qiong 1 Member thins southward, while the Qiong 2 Member is thin in the central part but thick in the northern and southern parts. Outside the rift, the Qiong 2 Member is distributed throughout the region, with the Q2-1 sub-member directly overlapping either the Qiong 1 Member or the limestone of the Dengying Formation. Shales in the Q2-1 sub-member enjoy superior hydrocarbon generation and reservoir conditions, as well as vertical/lateral sealing performance, emerging as a shale gas enrichment interval. For instance, in the northern part of the intracratonic rift, shales in the Q2-1 sub-member in well Tianxing-1 contain well-developed micropores and microfractures, with logging-derived porosity ranging from 4.93% to 6.57% (average: 5.08%). In the central part of the Deyang-Anyue intracratonic rift trough, shales in the Q2-1 sub-member in well Weiye-1 well exhibit organic matter-hosted pores, with logging-derived porosity ranging from 4.20% to 4.70% (average: 4.51%). In the Qujing area, Yunnan Province, within the southern part of the rift, black shales in the Qiongzhusi Formation in wells Qudi-1 and Quye-1 reveal well-developed black shales with high-pressure mercury injection-derived porosity spanning 1.59% to 11.33% (average: 5.0%). Although shales in the Qiong 1 Member exhibit favorable source-reservoir properties, the shale gas generated is prone to escape along karst zones or faults, unconducive to in-situ accumulation. For instance, in the northern part of the intracratonic rift, the Q1-3 submember in well Chuanshen-1 exhibits a thickness of about 40 m, logging-derived average TOC of 3.5%, and logging-derived porosity of 6.4%, suggesting high-quality source rocks and reservoirs but unfavorable conditions for in-situ accumulation. Overall, shales in the Q2-1 sub-member are identified as a sweet-spot interval for shale gas exploration due to their high porosity and great sealing performance. This study can serve as a critical basis and guide for future shale gas exploration in the Upper Yangtze region.

Keywords

shale gas, enrichment interval, stratigraphic subdivision, Qiongzhusi Formation, Lower Cambrian, Upper Yangtze region

DOI

10.12363/issn.1001-1986.24.12.0765

Reference

[1] HOFFMAN P F,KAUFMAN A J,HALVERSON G P,et al. A Neoproterozoic snowball Earth[J]. Science,1998,281(5381):1342−1346.

[2] DONNADIEU Y,GODDÉRIS Y,RAMSTEIN G,et al. A “snowball Earth” climate triggered by continental break–up through changes in runoff[J]. Nature,2004,428:303−306.

[3] MARSHALL C R. Explaining the Cambrian “explosion” of animals[J]. Annual Review of Earth and Planetary Sciences,2006,34:355−384.

[4] PENG S C,BABCOCK L E,AHLBERG P. The Cambrian period[M]//GRADSTEIN F M,OGG J G,SCHMITZ M D,et al. Geologic time scale 2020. Amsterdam:Elsevier,2020:565–629.

[5] 朱光有,赵坤,李婷婷,等. 中国华南地区下寒武统烃源岩沉积环境、发育模式与分布预测[J]. 石油学报,2020,41(12):1567−1586.

ZHU Guangyou,ZHAO Kun,LI Tingting,et al. Sedimentary environment,development model and distribution prediction of Lower Cambrian source rocks in South China[J]. Acta Petrolei Sinica,2020,41(12):1567−1586.

[6] 梁霄,李香华,徐剑良,等. 从优质烃源岩到储层:构造–沉积分异格局下的四川盆地中西部下寒武统页岩气勘探前景[J]. 天然气工业,2021,41(5):30−41.

LIANG Xiao,LI Xianghua,XU Jianliang,et al. Exploration prospects of Lower Cambrian shale gas in the central–western Sichuan Basin under the pattern of tectonic–depositional differentiation:From high–quality source rocks to reservoirs[J]. Natural Gas Industry,2021,41(5):30−41.

[7] 张科,苏劲,陈永权,等. 塔里木盆地寒武系–奥陶系烃源岩油源特征与超深层油气来源[J]. 地质学报,2023,97(6):2026−2041.

ZHANG Ke,SU Jin,CHEN Yongquan,et al. The biogeochemical features of the Cambrian–Ordovician source rocks and origin of ultra–deep hydrocarbons in the Tarim Basin[J]. Acta Geologica Sinica,2023,97(6):2026−2041.

[8] 汪建国,陈代钊,王清晨,等. 中扬子地区晚震旦世–早寒武世转折期台–盆演化及烃源岩形成机理[J]. 地质学报,2007,81(8):1102−1109.

WANG Jianguo,CHEN Daizhao,WANG Qingchen,et al. Platform evolution and marine source rock deposition during the terminal Sinian to Early Cambrian in the middle Yangtze Region[J]. Acta Geologica Sinica,2007,81(8):1102−1109.

[9] 欧阳征健,冯娟萍,姚韦卓,等. 鄂尔多斯盆地及周缘寒武系烃源岩地质特征及有利区带优选[J]. 地质科学,2023,58(4):1291−1308.

OUYANG Zhengjian,FENG Juanping,YAO Weizhuo,et al. Characteristics and favorable areas of Cambrian natural gas reservoirs in Ordos Basin and its periphery areas[J]. Chinese Journal of Geology,2023,58(4):1291−1308.

[10] GORIN G E,RACZ L G,WALTER M R. Late Precambrian–Cambrian sediments of Huqf group,sultanate of Oman[J]. AAPG Bulletin,1982,66(12):2609−2627.

[11] ZHURAVLEV A Y,WOOD R A. The two phases of the Cambrian explosion[J]. Scientific Reports,2018,8(1):16656.

[12] WILLE M,NÄGLER T F,LEHMANN B,et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J]. Nature,2008,453(7196):767−769.

[13] ZHU Maoyan,LI Xianhua. Introduction:From snowball Earth to the Cambrian explosion–evidence from China[J]. Geological Magazine,2017,154(6):1187−1192.

[14] OKADA Y,SAWAKI Y,KOMIYA T,et al. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges,Weng’an and Chengjiang areas,South China[J]. Gondwana Research,2014,25(3):1027−1044.

[15] JIANG Shaoyong,PI Daohui,HEUBECK C,et al. Early Cambrian ocean anoxia in South China[J]. Nature,2009,459(7248):E5−E6.

[16] XU Lingang,MAO Jingwen. Trace element and C–S–Fe geochemistry of Early Cambrian black shales and associated polymetallic Ni–Mo sulfide and vanadium mineralization,South China:Implications for paleoceanic redox variation[J]. Ore Geology Reviews,2021,135:104210.

[17] FANG Xinyan,WU Liangliang,GENG Ansong,et al. Formation and evolution of the Ediacaran to Lower Cambrian black shales in the Yangtze Platform,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,527:87−102.

[18] XIANG Lei,SCHOEPFER S D,ZHANG Hua,et al. Evolution of primary producers and productivity across the Ediacaran–Cambrian transition[J]. Precambrian Research,2018,313:68−77.

[19] EL–GHALI M A K,SHELUKHINA O,ABBASI I A,et al. Depositional and sequence stratigraphic controls on diagenesis in the Upper Cambrian–Lower Ordovician Barik Formation,central Oman:Implications for prediction of reservoir porosity in a hybrid–energy delta system[J]. Marine and Petroleum Geology,2024,160:106611.

[20] 张天怡,黄士鹏,李贤庆,等. 四川盆地下寒武统筇竹寺组沉积地球化学特征与有机质富集机制[J]. 天然气地球科学,2024,35(4):688−703.

ZHANG Tianyi,HUANG Shipeng,LI Xianqing,et al. Sedimentary geochemical characteristics and organic matter enrichment of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin[J]. Natural Gas Geoscience,2024,35(4):688−703.

[21] 魏国齐,杨威,谢武仁,等. 克拉通内裂陷及周缘大型岩性气藏形成机制、潜力与勘探实践:以四川盆地震旦系–寒武系为例[J]. 石油勘探与开发,2022,49(3):465−477.

WEI Guoqi,YANG Wei,XIE Wuren,et al. Formation mechanisms,potentials and exploration practices of large lithologic gas reservoirs in and around an intracratonic rift:Taking the Sinian–Cambrian of Sichuan Basin as an example[J]. Petroleum Exploration and Development,2022,49(3):465−477.

[22] 魏国齐,王志宏,李剑,等. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学,2017,28(1):1−13.

WEI Guoqi,WANG Zhihong,LI Jian,et al. Characteristics of source rocks,resource potential and exploration direction of Sinian and Cambrian in Sichuan Basin[J]. Natural Gas Geoscience,2017,28(1):1−13.

[23] 谢增业,李剑,杨春龙,等. 川中古隆起震旦系–寒武系天然气地球化学特征与太和气区的勘探潜力[J]. 天然气工业,2021,41(7):1−14.

XIE Zengye,LI Jian,YANG Chunlong,et al. Geochemical characteristics of Sinian–Cambrian natural gas in central Sichuan paleo–uplift and exploration potential of Taihe gas area[J]. Natural Gas Industry,2021,41(7):1−14.

[24] 杜金虎,汪泽成,邹才能,等. 古老碳酸盐岩大气田地质理论与勘探实践[M]. 北京:石油工业出版社,2015.

[25] 杨威,魏国齐,谢武仁,等. 古隆起在四川盆地台内碳酸盐岩丘滩体规模成储中的作用[J]. 天然气工业,2021,41(4):1−12.

YANG Wei,WEI Guoqi,XIE Wuren,et al. Role of paleouplift in the scale formation of intra–platform carbonate mound–bank body reservoirs in the Sichuan Basin[J]. Natural Gas Industry,2021,41(4):1−12.

[26] POTTER C J. Paleozoic shale gas resources in the Sichuan Basin,China[J]. AAPG Bulletin,2018,102(6):987−1009.

[27] WANG Wenyang,PANG Xiongqi,CHEN Zhangxin,et al. Quantitative prediction of oil and gas prospects of the Sinian–Lower Paleozoic in the Sichuan Basin in Central China[J]. Energy,2019,174:861−872.

[28] 魏国齐,杨威,杜金虎,等. 四川盆地震旦纪–早寒武世克拉通内裂陷地质特征[J]. 天然气工业,2015,35(1):24−35.

WEI Guoqi,YANG Wei,DU Jinhu,et al. Geological characteristics of the Sinian–Early Cambrian intracratonic rift,Sichuan Basin[J]. Natural Gas Industry,2015,35(1):24−35.

[29] 钟勇,李亚林,张晓斌,等. 川中古隆起构造演化特征及其与早寒武世绵阳–长宁拉张槽的关系[J]. 成都理工大学学报(自然科学版),2014,41(6):703−712.

ZHONG Yong,LI Yalin,ZHANG Xiaobin,et al. Evolution characteristics of central Sichuan palaeouplift and its relationship with Early Cambrian Mianyang–Changning intracratonic sag[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2014,41(6):703−712.

[30] 李忠权,刘记,李应,等. 四川盆地震旦系威远–安岳拉张侵蚀槽特征及形成演化[J]. 石油勘探与开发,2015,42(1):26−33.

LI Zhongquan,LIU Ji,LI Ying,et al. Formation and evolution of Weiyuan–Anyue extension–erosion groove in Sinian system,Sichuan Basin[J]. Petroleum Exploration and Development,2015,42(1):26−33.

[31] PI Daohui,LIU Congqiang,SHIELDS–ZHOU G A,et al. Trace and rare earth element geochemistry of black shale and kerogen in the Early Cambrian Niutitang Formation in Guizhou Province,South China:Constraints for redox environments and origin of metal enrichments[J]. Precambrian Research,2013,225:218−229.

[32] ZHOU Lei,KANG Zhihong,WANG Zongxiu,et al. Sedimentary geochemical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform[J]. Journal of Petroleum Science and Engineering,2017,159:376−386.

[33] MA Yiquan,LU Yongchao,LIU Xiaofeng,et al. Depositional environment and organic matter enrichment of the Lower Cambrian Niutitang shale in western Hubei Province,South China[J]. Marine and Petroleum Geology,2019,109:381−393.

[34] 马子杰,唐玄,张金川,等. 上扬子地区寒武系牛蹄塘组页岩有机质孔隙发育特征及主控因素[J]. 地学前缘,2023,30(3):124−137.

MA Zijie,TANG Xuan,ZHANG Jinchuan,et al. Organic matter–hosted pores in the Cambrian Niutitang shales of the Upper Yangtze region:Pore development characteristics and main controlling factors[J]. Earth Science Frontiers,2023,30(3):124−137.

[35] 王濡岳,丁文龙,龚大建,等. 渝东南–黔北地区下寒武统牛蹄塘组页岩裂缝发育特征与主控因素[J]. 石油学报,2016,37(7):832−845.

WANG Ruyue,DING Wenlong,GONG Dajian,et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation,southeastern Chongqing–northern Guizhou area[J]. Acta Petrolei Sinica,2016,37(7):832−845.

[36] 梁峰,吴伟,张琴,等. 四川盆地南部下寒武统筇竹寺组页岩孔隙结构特征与页岩气赋存模式[J]. 天然气工业,2024,44(3):131−142.

LIANG Feng,WU Wei,ZHANG Qin,et al. Shale pore structure characteristics and shale gas occurrence pattern of the Lower Cambrian Qiongzhusi Formation in the southern Sichuan Basin[J]. Natural Gas Industry,2024,44(3):131−142.

[37] WANG Ruyue,DING Wenlong,ZHANG Yeqian,et al. Analysis of developmental characteristics and dominant factors of fractures in Lower Cambrian marine shale reservoirs:A case study of Niutitang Formation in Cen’gong Block,Southern China[J]. Journal of Petroleum Science and Engineering,2016,138:31−49.

[38] 周慧,李伟,张宝民,等. 四川盆地震旦纪末期–寒武纪早期台盆的形成与演化[J]. 石油学报,2015,36(3):310−323.

ZHOU Hui,LI Wei,ZHANG Baomin,et al. Formation and evolution of Upper Sinian to Lower Cambrian intraplatformal basin in Sichuan Basin[J]. Acta Petrolei Sinica,2015,36(3):310−323.

[39] WANG Jian,LI Zhengxiang. History of Neoproterozoic rift basins in South China:Implications for Rodinia break–up[J]. Precambrian Research,2003,122(1/2/3/4):141−158.

[40] LI Z X,BOGDANOVA S V,COLLINS A S,et al. Assembly,configuration,and break–up history of Rodinia:A synthesis[J]. Precambrian Research,2008,160(1/2):179−210.

[41] 黎荣,王永骁,汪泽成,等. 四川盆地晚震旦世–早寒武世德阳–安岳裂陷槽南段地质特征[J]. 石油勘探与开发,2023,50(2):285−296.

LI Rong,WANG Yongxiao,WANG Zecheng,et al. Geological characteristics of the southern segment of the Late Sinian–Early Cambrian Deyang–Anyue rift trough in Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2023,50(2):285−296.

[42] 谢武仁,姜华,马石玉,等. 四川盆地德阳–安岳裂陷晚震旦世–早寒武世沉积演化特征与有利勘探方向[J]. 天然气地球科学,2022,33(8):1240−1250.

XIE Wuren,JIANG Hua,MA Shiyu,et al. Sedimentary evolution characteristics and favorable exploration directions of Deyang–Anyue rift within the Sichuan Basin in Late Sinian–Early Cambrian[J]. Natural Gas Geoscience,2022,33(8):1240−1250.

[43] 杜金虎,汪泽成,邹才能,等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报,2016,37(1):1−16.

DU Jinhu,WANG Zecheng,ZOU Caineng,et al. Discovery of intra–cratonic rift in the Upper Yangtze and its control effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica,2016,37(1):1−16.

[44] 杨威,魏国齐,谢武仁,等. 克拉通内裂陷边缘台缘丘滩体规模储层发育主控因素与成因模式:以四川盆地德阳–安岳克拉通内裂陷东侧灯影组四段为例[J]. 天然气地球科学,2022,33(10):1541−1553.

YANG Wei,WEI Guoqi,XIE Wuren,et al. Main controlling factors and genetic mechanism for the development of high–quality reservoirs in the mound–shoal complexes on the platform margin mound–beach body at platform margin of the inner cratonic rift:Case study of the fourth member of Dengying Formation in the east side of the Deyang–Anyue cratonic rifts,Sichuan Basin[J]. Natural Gas Geoscience,2022,33(10):1541−1553.

[45] COMPSTON W,ZHANG Zichao,COOPER J A,et al. Further SHRIMP geochronology on the Early Cambrian of South China[J]. American Journal of Science,2008,308(4):399−420.

[46] WANG Xinqiang,SHI Xiaoying,JIANG Ganqing,et al. New U–Pb age from the basal Niutitang Formation in South China:Implications for diachronous development and condensation of stratigraphic units across the Yangtze Platform at the Ediacaran–Cambrian transition[J]. Journal of Asian Earth Sciences,2012,48:1−8.

[47] 刘瑞崟,周文,徐浩,等. 层序格架下构造–沉积分异对页岩气储层特征的控制:以四川盆地西南部筇竹寺组为例[J]. 沉积学报,2023,41(5):1478−1494.

LIU Ruiyin,ZHOU Wen,XU Hao,et al. Control of the pattern of tectonic–depositional differentiation on shale gas reservoir characteristics within a sequence stratigraphic framework:A case study from the Qiongzhusi Formation in the southwestern Sichuan Basin[J]. Acta Sedimentologica Sinica,2023,41(5):1478−1494.

[48] YAWAR Z,SCHIEBER J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology,2017,360:22−34.

[49] SCHIEBER J,SOUTHARD J,THAISEN K. Accretion of mudstone beds from migrating floccule ripples[J]. Science,2007,318(5857):1760−1763.

[50] 施振生,赵圣贤,周天琪,等. 海相含气页岩水平层理类型、成因及其页岩气意义:以川南地区古生界五峰组–龙马溪组为例[J]. 石油与天然气地质,2023,44(6):1499−1514.

SHI Zhensheng,ZHAO Shengxian,ZHOU Tianqi,et al. Types and genesis of horizontal bedding of marine gas–bearing shale and its significance for shale gas:A case study of the Wufeng–Longmaxi shale in southern Sichuan Basin,China[J]. Oil & Gas Geology,2023,44(6):1499−1514.

[51] 施振生,邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报,2021,39(1):181−196.

SHI Zhensheng,QIU Zhen. Main bedding types of marine fine–grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica,2021,39(1):181−196.

[52] SHI Zhensheng,ZHOU Tianqi,WANG Hongyan,et al. Depositional structures and their reservoir characteristics in the Wufeng–Longmaxi shale in southern Sichuan Basin,China[J]. Energies,2022,15(5):1618.

[53] GOLDBERG T,STRAUSS H,GUO Qingjun,et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform:Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):175−193.

[54] OCH L M,SHIELDS–ZHOU G A,POULTON S W,et al. Redox changes in Early Cambrian black shales at Xiaotan section,Yunnan Province,South China[J]. Precambrian Research,2013,225:166−189.

[55] 胡琳,薛晓辉,杜伟,等. 云南曲靖地区筇竹寺组泥页岩储层发育特征与影响因素[J]. 高校地质学报,2022,28(4):617−622.

HU Lin,XUE Xiaohui,DU Wei,et al. Reservoir characteristics of the Qiongzhusi shales and their influencing factors in the Qujing area,Yunnan Province[J]. Geological Journal of China Universities,2022,28(4):617−622.

[56] 王玉满,董大忠,程相志,等. 海相页岩有机质碳化的电性证据及其地质意义:以四川盆地南部地区下寒武统筇竹寺组页岩为例[J]. 天然气工业,2014,34(8):1−7.

WANG Yuman,DONG Dazhong,CHENG Xiangzhi,et al. Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance:A case of the Lower Cambrian Qiongzhusi shale in southern Sichuan Basin[J]. Natural Gas Industry,2014,34(8):1−7.

[57] 王玉满,李新景,陈波,等. 海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发,2018,45(3):385−395.

WANG Yuman,LI Xinjing,CHEN Bo,et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development,2018,45(3):385−395.

[58] 杨威,魏国齐,谢武仁,等. 四川盆地绵竹–长宁克拉通内裂陷东侧震旦系灯影组四段台缘丘滩体成藏特征与勘探前景[J]. 石油勘探与开发,2020,47(6):1174−1184.

YANG Wei,WEI Guoqi,XIE Wuren,et al. Hydrocarbon accumulation and exploration prospect of mound–shoal complexes on the platform margin of the fourth member of Sinian Dengying Formation in the east of Mianzhu–Changning intracratonic rift,Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2020,47(6):1174−1184.

[59] 魏国齐,杜金虎,徐春春,等. 四川盆地高石梯–磨溪地区震旦系–寒武系大型气藏特征与聚集模式[J]. 石油学报,2015,36(1):1−12.

WEI Guoqi,DU Jinhu,XU Chunchun,et al. Characteristics and accumulation modes of large gas reservoirs in Sinian–Cambrian of Gaoshiti–Moxi region,Sichuan Basin[J]. Acta Petrolei Sinica,2015,36(1):1−12.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.