Coal Geology & Exploration
Abstract
Background Carbon capture, utilization, and storage (CCUS) is considered a key technology to promote large-scale carbon dioxide (CO2) emission reduction. Against the backdrop of achieving its goals of carbon neutrality and peak carbon dioxide emissions, China faces a tremendous challenge of CO2 emission reduction. This situation will provide new driving forces for the development of geologic CO2 sequestration while also imposing higher requirements for technical innovation and industrialization of the technology. Methods and Advances This study systematically reviews the development process of policies on CCUS of China over the past two decades, with over 30 policies involved accumulatively. It provides an outline of progress made in CCUS demonstration projects in China, summarizing three major technical directions, i.e., CO2 sequestration in deep saline aquifers, hydrocarbon reservoirs, and deep coal seams. Among these projects, the 400 × 104 t/a and 150 × 104 t/a CCUS pilot demonstration projects lunched by the Shaanxi Coal and Chemical Industry Group Co., Ltd. and the China Huaneng Group Co., Ltd., respectively, represent pioneering efforts in the development of carbon sequestration. The commercial application of CO2-enhanced oil recovery (CO2-EOR) technology has been achieved. For instance, the Jilin oilfield of PetroChina and the Shengli oilfield of SINOPE have achieved cumulative CO2 injection exceeding 350 × 104 t, increasing oil recovery by 10% to 15%. The CO2-enhanced gas recovery (CO2-EGR) pilot tests have been conducted in tight-sand gas reservoirs in Yan’an, providing theoretical support for the synergy between enhanced natural gas recovery and CO2 storage. Furthermore, China’s first 10000-ton CO2-enhanced coalbed methane (CO2-ECBM) recovery demonstration project using horizontal wells is to be implemented in the Huainan mining area in Anhui Province, aiming to achieve breakthroughs in critical technologies and engineering for large-scale CO2-ECBM recovery combined with CO2 storage. Presently, geologic CO2 sequestration technology of China is in a critical stage of transitioning from technical verification to large-scale demonstration. Nevertheless, this technology still faces a range of challenges in fostering demonstration projects, achieving innovations in basic theories, integrating technical systems, and implementing supporting policies.Prospects In the future, it is necessary to intensify interdisciplinary technical innovations, gain deeper insights into the mechanisms and long-term safety of geologic CO2 sequestration, and promote the deep integration and application of artificial intelligence (AI) technologies in geologic CO2 sequestration. It is recommended to promote the collaborative development of the entire industry chain and enhance the support and guidance for medium- and long-term, large-scale CCUS demonstration projects. The purpose is to propel theoretical breakthroughs and technical innovations. Additionally, relevant policies, standards, and incentive mechanisms should be further optimized. All these efforts are expected to comprehensively drive the large-scale development of geologic CO2 sequestration technology.
Keywords
carbon neutrality, carbon dioxide (CO2), geologic sequestration, developmental measure, prospect
DOI
10.12363/issn.1001-1986.25.07.0545
Recommended Citation
ZHAO Yue, YANG Xuechao, CHEN Xiaodong,
et al.
(2025)
"Advances in research on the policies, technologies, and demonstration projects of geologic CO2 sequestration in China,"
Coal Geology & Exploration: Vol. 53:
Iss.
12, Article 6.
DOI: 10.12363/issn.1001-1986.25.07.0545
Available at:
https://cge.researchcommons.org/journal/vol53/iss12/6
Reference
[1] 刘志鹏,李印实. 二氧化碳还原技术助力构筑碳中和循环社会[J]. 科学通报,2024,69(11):1395−1398.
LIU Zhipeng,LI Yinshi. Carbon dioxide reduction technology promotes the construction of carbon–neutral recycling society[J]. Chinese Science Bulletin,2024,69(11):1395−1398.
[2] 向勇,侯力,杜猛,等. 中国CCUS–EOR技术研究进展及发展前景[J]. 油气地质与采收率,2023,30(2):1−17.
XIANG Yong,HOU Li,DU Meng,et al. Research progress and development prospect of CCUS–EOR technologies in China[J]. Petroleum Geology and Recovery Efficiency,2023,30(2):1−17.
[3] 冉武平,张永太,艾贤臣,等. 工业固体废弃物矿化封存CO2研究综述[J]. 科学技术与工程,2023,23(16):6718−6727.
RAN Wuping,ZHANG Yongtai,AI Xianchen,et al. Review of CO2 sequestration research in industrial solid waste mineralization[J]. Science Technology and Engineering,2023,23(16):6718−6727.
[4] 赵震宇,姚舜,杨朔鹏,等. “双碳”目标下:中国CCUS发展现状、存在问题及建议[J]. 环境科学,2023,44(2):1128−1138.
ZHAO Zhenyu,YAO Shun,YANG Shuopeng,et al. Under goals of carbon peaking and carbon neutrality:Status,problems,and suggestions of CCUS in China[J]. Environmental Science,2023,44(2):1128−1138.
[5] 邹才能,薛华庆,熊波,等. “碳中和”的内涵、创新与愿景[J]. 天然气工业,2021,41(8):46−57.
ZOU Caineng,XUE Huaqing,XIONG Bo,et al. Connotation,innovation and vision of “carbon neutral”[J]. Natural Gas Industry,2021,41(8):46−57.
[6] 李琦,刘桂臻,李小春,等. 多维度视角下CO2捕集利用与封存技术的代际演变与预设[J]. 工程科学与技术,2022,54(1):157−166.
LI Qi,LIU Guizhen,LI Xiaochun,et al. Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective[J]. Advanced Engineering Sciences,2022,54(1):157−166.
[7] 杨传明,王帆临,沈洁. 基于水–能–碳三维足迹的中国碳排放效率研究[J]. 环境科学与技术,2025,48(2):178−190.
YANG Chuanming,WANG Fanlin,SHEN Jie. Study on carbon emission efficiency based on the three–dimensional footprint of water–energy–carbon in China[J]. Environmental Science & Technology,2025,48(2):178−190.
[8] 谢和平,刘涛,吴一凡,等. CO2的能源化利用技术进展与展望[J]. 工程科学与技术,2022,54(1):145−156.
XIE Heping,LIU Tao,WU Yifan,et al. Progress and prospect of CO2 energy utilization technology[J]. Advanced Engineering Sciences,2022,54(1):145−156.
[9] 岑可法. 煤炭高效清洁低碳利用研究进展[J]. 科技导报,2018,36(10):66−74.
CEN Kefa. Research progress and outlook for efficient,clean and low–carbon coal utilization[J]. Science & Technology Review,2018,36(10):66−74.
[10] 蒋林桐,马天然,李采,等. CO2地质封存诱发断层活化和流体泄漏模型及数值研究[J]. 地质学报,2024,98(11):3418−3432.
JIANG Lintong,MA Tianran,LI Cai,et al. The modeling and numerical study of fault activation and fluid leakage in CO2 geological storage[J]. Acta Geologica Sinica,2024,98(11):3418−3432.
[11] 吴何来,李汪繁,丁先. “双碳”目标下我国碳捕集、利用与封存政策分析及建议[J]. 电力建设,2022,43(4):28−37.
WU Helai,LI Wangfan,DING Xian. Policy analysis and suggestion for carbon capture,utilization and storage under double carbon target in China[J]. Electric Power Construction,2022,43(4):28−37.
[12] 刘克峰,刘陶然,蔡勇,等. 二氧化碳捕集技术研究和工程示范进展[J]. 化工进展,2024,43(6):2901−2914.
LIU Kefeng,LIU Taoran,CAI Yong,et al. Progress in research and engineering demonstration of CO2 capture technology[J]. Chemical Industry and Engineering Progress,2024,43(6):2901−2914.
[13] 任强,吴鹏,库瑶瑶. 基于知识图谱的中国碳捕集利用与封存技术研究进展与启示[J]. 四川大学学报(自然科学版),2024,61(2):027001.
REN Qiang,WU Peng,KU Yaoyao. Research progress and enlightenment of carbon capture,utilization and storage technology in China based on knowledge graph[J]. Journal of Sichuan University (Natural Science Edition),2024,61(2):027001.
[14] 李小春,张九天,李琦,等. 中国碳捕集、利用与封存技术路线图(2011版)实施情况评估分析[J]. 科技导报,2018,36(4):85−95.
LI Xiaochun,ZHANG Jiutian,LI Qi,et al. Implementation status and gap analysis of China’s carbon dioxide capture,utilization and geological storage technology roadmap (2011 edition)[J]. Science & Technology Review,2018,36(4):85−95.
[15] 史明威,高仕康,吕昊东,等. 中美碳捕集利用与封存技术发展与政策体系对比研究[J/OL]. 洁净煤技术,2024:1–18 (2024-06-26) [2025-5-25]. https://kns.cnki.net/kcms/detail/11.3676.TD.20240625.1158.002.html.
SHI Mingwei,GAO Shikang,LYU Haodong,et al. Comparative research on the development and policy frameworks of carbon capture,utilization,and storage (CCUS) technology in China and the United States[J/OL]. Clean Coal Technology,2024:1–18 (2024-06-26) [2025-5-25]. https://kns.cnki.net/kcms/detail/11.3676.TD.20240625.1158.002.html.
[16] 李阳,王锐,赵清民,等. 中国碳捕集利用与封存技术应用现状及展望[J]. 石油科学通报,2023,8(4):391−397.
LI Yang,WANG Rui,ZHAO Qingmin,et al. Status and prospects for CO2 capture,utilization and storage technology in China[J]. Petroleum Science Bulletin,2023,8(4):391−397.
[17] 张贤,李阳,马乔,等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学,2021,23(6):70−80.
ZHANG Xian,LI Yang,MA Qiao,et al. Development of carbon capture,utilization and storage technology in China[J]. Strategic Study of CAE,2021,23(6):70−80.
[18] 向国育,申长俊,陆诗建,等. 二氧化碳捕集、利用与封存示范工程进展[J]. 低碳化学与化工,2025,50(3):113−122.
XIANG Guoyu,SHEN Changjun,LU Shijian,et al. Progress of carbon dioxide capture,utilization and storage demonstration engineerings[J]. Low–Carbon Chemistry and Chemical Engineering,2025,50(3):113−122.
[19] 杨永钊,周进生,胡海文,等. CCUS–EOR产业的发展现状、经济效益与未来展望[J]. 中国矿业,2025,34(2):190−203.
YANG Yongzhao,ZHOU Jinsheng,HU Haiwen,et al. Development status,economic benefits and future prospects of CCUS–EOR industry[J]. China Mining Magazine,2025,34(2):190−203.
[20] 刘克峰,董卫刚,胡雪生,等. 推动二氧化碳捕集、输送、应用和封存发展的政策和举措[J]. 化工进展,2025,44(9):4879−4897.
LIU Kefeng,DONG Weigang,HU Xuesheng,et al. Policies and measures to promote the development of CCUS[J]. Chemical Industry and Engineering Progress,2025,44(9):4879−4897.
[21] 孙海萍,孙洋洲. 国内油气企业CCUS项目现状及产业发展探究[J]. 低碳化学与化工,2024,49(7):139−146.
SUN Haiping,SUN Yangzhou. Study on project current situation and industry development of CCUS in domestic oil and gas enterprises[J]. Low–Carbon Chemistry and Chemical Engineering,2024,49(7):139−146.
[22] 王高峰,廖广志,胡占群,等. 规模化CCUS–EOR项目技术经济性分析及启示[J]. 洁净煤技术,2024,30(10):120−127.
WANG Gaofeng,LIAO Guangzhi,HU Zhanqun,et al. Technical and economic analysis and inspiration of a large scale CCUS–EOR project[J]. Clean Coal Technology,2024,30(10):120−127.
[23] 周守为,李清平,朱军龙,等. CO2海洋封存的思考与新路径探索[J]. 天然气工业,2024,44(4):1−10.
ZHOU Shouwei,LI Qingping,ZHU Junlong,et al. Consideration on CO2 marine storage and exploration of new paths[J]. Natural Gas Industry,2024,44(4):1−10.
[24] 张兵兵,王慧敏,曾尚红,等. 二氧化碳矿物封存技术现状及展望[J]. 化工进展,2012,31(9):2075−2083.
ZHANG Bingbing,WANG Huimin,ZENG Shanghong,et al. Current status and outlook of carbon dioxide mineral carbonation technologies[J]. Chemical Industry and Engineering Progress,2012,31(9):2075−2083.
[25] 王紫剑,唐玄,荆铁亚,等. 中国年封存量百万吨级CO2地质封存选址策略[J]. 现代地质,2022,36(5):1414−1431.
WANG Zijian,TANG Xuan,JING Tieya,et al. Site selection strategy for an annual million–ton scale CO2 geological storage in China[J]. Geoscience,2022,36(5):1414−1431.
[26] 李小春,梅开元,蔡雨娜,等. 提高CO2封存强度的多层协同抽注技术[J]. 工程科学与技术,2022,54(1):167−176.
LI Xiaochun,MEI Kaiyuan,CAI Yuna,et al. Improvement of CO2 sequestration intension with collaborative pumping–injection technologies in multi–formations[J]. Advanced Engineering Sciences,2022,54(1):167−176.
[27] 刘世奇,皇凡生,杜瑞斌,等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探,2023,51(2):158−174.
LIU Shiqi,HUANG Fansheng,DU Ruibin,et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J]. Coal Geology & Exploration,2023,51(2):158−174.
[28] 包一翔,李井峰,郭强,等. 二氧化碳用于地质资源开发及同步封存技术综述[J]. 煤炭科学技术,2022,50(6):84−95.
BAO Yixiang,LI Jingfeng,GUO Qiang,et al. Review on technologies of geological resources exploitation by using carbon dioxide and its synchronous storage[J]. Coal Science and Technology,2022,50(6):84−95.
[29] 叶航,郝宁,刘琦. CO2咸水层封存关键参数及其实验表征技术研究进展[J]. 发电技术,2022,43(4):562−573.
YE Hang,HAO Ning,LIU Qi. Review on key parameters and characterization technology of CO2 sequestration mechanism in saline aquifers[J]. Power Generation Technology,2022,43(4):562−573.
[30] 张琳琳,赖枫鹏,董银涛,等. 盐水层地质参数对CO2封存效果的评价[J]. 煤炭学报,2024,49(9):3932−3943.
ZHANG Linlin,LAI Fengpeng,DONG Yintao,et al. Evaluation of CO2 storage effected by geological parameters of brine layer[J]. Journal of China Coal Society,2024,49(9):3932−3943.
[31] 马馨蕊,梁杰,李清,等. 咸水层CO2地质封存研究进展及前景展望[J]. 海洋地质前沿,2024,40(10):1−18.
MA Xinrui,LIANG Jie,LI Qing,et al. Progress and prospects of CO2 geological storage in saline aquifer[J]. Marine Geology Frontiers,2024,40(10):1−18.
[32] 周银邦,王锐,何应付,等. 咸水层CO2地质封存典型案例分析及对比[J]. 油气地质与采收率,2023,30(2):162−167.
ZHOU Yinbang,WANG Rui,HE Yingfu,et al. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J]. Petroleum Geology and Recovery Efficiency,2023,30(2):162−167.
[33] 曹默雷,陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报,2022,96(5):1868−1882.
CAO Molei,CHEN Jianping. The site selection geological evaluation of the CO2 storage of the deep saline aquifer[J]. Acta Geologica Sinica,2022,96(5):1868−1882.
[34] 张冰,梁凯强,王维波,等. 鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J]. 非常规油气,2019,6(3):15−20.
ZHANG Bing,LIANG Kaiqiang,WANG Weibo,et al. Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J]. Unconventional Oil & Gas,2019,6(3):15−20.
[35] 马永法,董俊领,王旭,等. 松辽盆地林甸地区二氧化碳咸水层封存适宜性评价[J]. 水文地质工程地质,2025,52(1):238−248.
MA Yongfa,DONG Junling,WANG Xu,et al. Evaluation of suitability of CO2 geologic storage in deep saline aquifers in Lindian area of Songliao Basin[J]. Hydrogeology & Engineering Geology,2025,52(1):238−248.
[36] 师庆三. 碳中和约束下新疆塔里木、准噶尔、吐哈盆地CO2理论储存潜力评估[J]. 环境与可持续发展,2021,46(5):99−105.
SHI Qingsan. Evaluation of theoretical CO2 storage potential capacity in Tarim,Junggar and Turpan–Hagar Basins of Xinjiang under carbon neutrality constraints[J]. Environment and Sustainable Development,2021,46(5):99−105.
[37] 朱佩誉. CO2在咸水层的地质封存及应用进展[J]. 洁净煤技术,2021,27(增刊2):33−38.
ZHU Peiyu. Review on CO2 geological storage in saline formations[J]. Clean Coal Technology,2021,27(Sup.2):33−38.
[38] 丁国生,唐立根,丁一宸,等. 中国水层CO2地质封存技术攻关方向[J]. 天然气工业,2024,44(4):39−45.
DING Guosheng,TANG Ligen,DING Yichen,et al. Research direction of CO2 geological storage technology in aquifers in China[J]. Natural Gas Industry,2024,44(4):39−45.
[39] 肖江,宋世杰,刘兰兰,等. 二氧化碳捕集及封存技术探索研究:以陕煤集团榆林化学公司为例[J]. 煤炭科学技术,2024,52(5):316–323.
XIAO Jiang,SONG Shijie,LIU Lanlan,et al. Research on carbon dioxide capture and storage technology:A case study of Shaanxi Coal Group Yulin Chemical Co. ,Ltd. [J]. Coal Science and Technology,2024,52(5):316–323.
[40] 桑树勋,刘世奇,朱前林,等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报,2023,48(7):2700−2716.
SANG Shuxun,LIU Shiqi,ZHU Qianlin,et al. Research progress on technical basis of synergy between CO2 geological storage potential and energy resources[J]. Journal of China Coal Society,2023,48(7):2700−2716.
[41] 孙亮,陈文颖. CO2地质封存选址标准研究[J]. 生态经济,2012,28(7):33−38.
SUN Liang,CHEN Wenying. A review of selection criteria for the geological sequestration of CO2[J]. Ecological Economy,2012,28(7):33−38.
[42] 钱坤,杨胜来,窦洪恩,等. 注CO2过程中流体性质变化及驱油机理实验研究[J]. 石油科学通报,2019,4(1):69−82.
QIAN Kun,YANG Shenglai,DOU Hongen,et al. Interaction of the CO2–oil system and displacement mechanisms during CO2 flooding[J]. Petroleum Science Bulletin,2019,4(1):69−82.
[43] 王国锋,吕伟峰,崔凯,等. 全球二氧化碳捕集、利用与封存产业集群技术进展及应用展望[J]. 石油勘探与开发,2025,52(2):478−487.
WANG Guofeng,LYU Weifeng,CUI Kai,et al. Technical progress and application of global carbon dioxide capture,utilization and storage cluster[J]. Petroleum Exploration and Development,2025,52(2):478−487.
[44] 李德生,李伯华. “双碳”背景下石油地质学的理论创新与迈向能源发展多元化新时代[J]. 地学前缘,2022,29(6):1−9.
LI Desheng,LI Bohua. Towards a new era of diversified energy development:Innovation in theoretical petroleum geology to meet “dual carbon target”[J]. Earth Science Frontiers,2022,29(6):1−9.
[45] 宋新民,王峰,马德胜,等. 中国石油二氧化碳捕集、驱油与埋存技术进展及展望[J]. 石油勘探与开发,2023,50(1):206−218.
SONG Xinmin,WANG Feng,MA Desheng,et al. Progress and prospect of carbon dioxide capture,utilization and storage in CNPC oilfields[J]. Petroleum Exploration and Development,2023,50(1):206−218.
[46] 高明,孙盈盈,尹恒飞,等. 二氧化碳捕集、驱油与埋存技术进展及前景展望[J]. 石油科技论坛,2024,43(4):58−65.
GAO Ming,SUN Yingying,YIN Hengfei,et al. Progress and prospect of CCUS–EOR technology[J]. Petroleum Science and Technology Forum,2024,43(4):58−65.
[47] 杨哲琦,孙齐,邓辉,等. 中国CO2–EOR油田生产碳强度多技术情景建模与核算研究[J]. 石油科学通报,2023,8(2):247−258.
YANG Zheqi,SUN Qi,DENG Hui,et al. Multi–scenario modeling and estimating of carbon intensity in China’s CO2–EOR oilfields[J]. Petroleum Science Bulletin,2023,8(2):247−258.
[48] 胡永乐,郝明强,陈国利,等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发,2019,46(4):716−727.
HU Yongle,HAO Mingqiang,CHEN Guoli,et al. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development,2019,46(4):716−727.
[49] 计秉玉,何应付. 中国石化低渗透油藏CO2驱油实践与认识[J]. 油气藏评价与开发,2021,11(6):805−811.
JI Bingyu,HE Yingfu. Practice and understanding about CO2 flooding in low permeability oil reservoirs by Sinopec[J]. Petroleum Reservoir Evaluation and Development,2021,11(6):805−811.
[50] 李阳,黄文欢,金勇,等. 双碳愿景下中国石化不同油藏类型CO2驱提高采收率技术发展与应用[J]. 油气藏评价与开发,2021,11(6):793−804.
LI Yang,HUANG Wenhuan,JIN Yong,et al. Different reservoir types of CO2 flooding in Sinopec EOR technology development and application under “dual carbon” vision[J]. Petroleum Reservoir Evaluation and Development,2021,11(6):793−804.
[51] 张宗檩,吕广忠,王杰. 胜利油田CCUS技术及应用[J]. 油气藏评价与开发,2021,11(6):812−822.
ZHANG Zonglin,LYU Guangzhong,WANG Jie. CCUS and its application in Shengli Oilfield[J]. Petroleum Reservoir Evaluation and Development,2021,11(6):812−822.
[52] 王香增,杨红,王伟,等. 低渗透致密油藏CO2驱油与封存技术及实践[J]. 油气地质与采收率,2023,30(2):27−35.
WANG Xiangzeng,YANG Hong,WANG Wei,et al. Technology and practice of CO2 flooding and storage in low–permeability tight reservoirs[J]. Petroleum Geology and Recovery Efficiency,2023,30(2):27−35.
[53] 张烈辉,曹成,文绍牧,等. 碳达峰碳中和背景下发展CO2–EGR的思考[J]. 天然气工业,2023,43(1):13−22.
ZHANG Liehui,CAO Cheng,WEN Shaomu,et al. Thoughts on the development of CO2–EGR under the background of carbon peak and carbon neutrality[J]. Natural Gas Industry,2023,43(1):13−22.
[54] 朱浩楠,曹成,张烈辉,等. CO2驱气提高采收率机理及发展方向[J]. 油气藏评价与开发,2024,14(6):975−980.
ZHU Haonan,CAO Cheng,ZHANG Liehui,et al. Mechanism and development direction of CO2–EGR[J]. Petroleum Reservoir Evaluation and Development,2024,14(6):975−980.
[55] 曹成,陈星宇,张烈辉,等. 气藏注CO2提高采收率及封存评价方法研究进展[J]. 科学技术与工程,2024,24(18):7463−7475.
CAO Cheng,CHEN Xingyu,ZHANG Liehui,et al. Review of gas reservoir CO2 injection for enhanced recovery and sequest ration evaluation methods[J]. Science Technology and Engineering,2024,24(18):7463−7475.
[56] FU Lipei,SHAO Yefeng,SHAO Minglu,et al. Application and research progress of CO2 stimulation technology in unconventional oil and gas reservoirs:A review and prospect[J]. Energy & Fuels,2023,37(24):19400−19418.
[57] OMARI A,WANG Chao,LI Yang,et al. The progress of enhanced gas recovery (EGR) in shale gas reservoirs:A review of theory,experiments,and simulations[J]. Journal of Petroleum Science and Engineering,2022,213:110461.
[58] 黄前峰,丁蓉,李清平. 中国南海北部枯竭气田CO2封存潜力展望:以崖城13–1气田和东方1–1气田为例[J]. 中国矿业,2023,32(10):62−70.
HUANG Qianfeng,DING Rong,LI Qingping. A review of CO2 storage potential of depleted gas reservoirs in Northern South China Sea:Taking YC13–1 and DF1–1 gas fields as example[J]. China Mining Magazine,2023,32(10):62−70.
[59] 赵玉龙,黄义书,张涛,等. 页岩气藏超临界CO2压裂–提采–封存研究进展[J]. 天然气工业,2023,43(11):109−119.
ZHAO Yulong,HUANG Yishu,ZHANG Tao,et al. Research progress on supercritical CO2 fracturing,enhanced gas recovery and storage in shale gas reservoirs[J]. Natural Gas Industry,2023,43(11):109−119.
[60] 朱清源,吴克柳,张晟庭,等. 致密砂岩气藏注CO2提高天然气采收率微观机理[J]. 天然气工业,2024,44(4):135−145.
ZHU Qingyuan,WU Keliu,ZHANG Shengting,et al. Microscopic mechanism of CO2 injection to enhance gas recovery in tight sandstone gas reservoirs[J]. Natural Gas Industry,2024,44(4):135−145.
[61] 李中超,齐桂雪,罗波波,等. 深层低渗凝析气藏气驱适应性研究[J]. 油气藏评价与开发,2024,14(3):324−332.
LI Zhongchao,QI Guixue,LUO Bobo,et al. Gas flooding adaptability of deep low permeability condensate gas reservoir[J]. Petroleum Reservoir Evaluation and Development,2024,14(3):324−332.
[62] 廖广志,何新兴,位云生,等. 探索CCUS–EGR进攻性提高采收率新技术拓展天然气藏储碳新领域[J]. 石油科技论坛,2025,44(1):9−16.
LIAO Guangzhi,HE Xinxing,WEI Yunsheng,et al. Exploring CCUS–EGR new technology to aggressively improve natural gas recovery and expand the new field of underground carbon storage in gas reservoirs[J]. Petroleum Science and Technology Forum,2025,44(1):9−16.
[63] 刘操,赵春辉,钟福平,等. 深部煤层CO2地质封存量化评估及案例研究[J]. 煤炭科学技术,2024,52(增刊1):288−298.
LIU Cao,ZHAO Chunhui,ZHONG Fuping,et al. Quantitative assessment and case study of CO2 geological storage in deep coal seams[J]. Coal Science and Technology,2024,52(Sup.1):288−298.
[64] 苏现波,黄津,王乾,等. CO2强化煤层气产出与其同步封存实验研究[J]. 煤田地质与勘探,2023,51(1):176−184.
SU Xianbo,HUANG Jin,WANG Qian,et al. Experimental study on CO2–enhanced coalbed methane production and its simultaneous storage[J]. Coal Geology & Exploration,2023,51(1):176−184.
[65] 张守仁,桑树勋,吴见,等. CO2驱煤层气关键技术研发及应用[J]. 煤炭学报,2022,47(11):3952−3964.
ZHANG Shouren,SANG Shuxun,WU Jian,et al. Progress and application of key technologies for CO2 enhancing coalbed methane[J]. Journal of China Coal Society,2022,47(11):3952−3964.
[66] 凡永鹏,霍中刚,王永. 基于流–固–热耦合的CO2–ECBM数值模拟研究[J]. 煤矿安全,2022,53(2):162−169.
FAN Yongpeng,HUO Zhonggang,WANG Yong. Numerical simulation of CO2–ECBM based on fluid–solid–thermal coupled model[J]. Safety in Coal Mines,2022,53(2):162−169.
[67] 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探,2018,46(5):1−9.
SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration,2018,46(5):1−9.
[68] 姚艳斌,孙晓晓,万磊. 煤层CO2地质封存的微观机理研究[J]. 煤田地质与勘探,2023,51(2):146−157.
YAO Yanbin,SUN Xiaoxiao,WAN Lei. Micro–mechanism of geological sequestration of CO2 in coal seam[J]. Coal Geology & Exploration,2023,51(2):146−157.
[69] 钱静,易高峰,周琦忠,等. 三河尖关闭煤矿煤层CO2封存潜力研究[J]. 煤炭科学技术,2024,52(3):258−268.
QIAN Jing,YI Gaofeng,ZHOU Qizhong,et al. CO2 storage potential of coal seam in Sanhejian closed coal mine[J]. Coal Science and Technology,2024,52(3):258−268.
[70] 车永芳. 二氧化碳驱替煤层气技术发展现状分析[J]. 煤质技术,2024,39(5):67−73.
CHE Yongfang. Research status analysis of CO2–enhanced coalbed methane technology[J]. Coal Quality Technology,2024,39(5):67−73.
[71] 刘廷,马鑫,刁玉杰,等. 国内外CO2地质封存潜力评价方法研究现状[J]. 中国地质调查,2021,8(4):101−108.
LIU Ting,MA Xin,DIAO Yujie,et al. Research status of CO2 geological storage potential evaluation methods at home and abroad[J]. Geological Survey of China,2021,8(4):101−108.
[72] 王光付,李阳,王锐,等. 二氧化碳地质封存与利用新进展[J]. 石油与天然气地质,2024,45(4):1168−1179.
WANG Guangfu,LI Yang,WANG Rui,et al. Recent advances in geological carbon dioxide storage and utilization[J]. Oil & Gas Geology,2024,45(4):1168−1179.
[73] 祁生文,郑博文,路伟,等. 二氧化碳地质封存选址指标体系及适宜性评价研究[J]. 第四纪研究,2023,43(2):523−550.
QI Shengwen,ZHENG Bowen,LU Wei,et al. Investigation of indexes system and suitability evaluation for carbon dioxide geological storage site[J]. Quaternary Sciences,2023,43(2):523−550.
[74] 祁生文,郑博文,王赞,等. 二氧化碳地质利用与封存场址的地质评价[J]. 中国科学:地球科学,2023,53(9):1937−1957.
QI Shengwen,ZHENG Bowen,WANG Zan,et al. Geological evaluation for the carbon dioxide geological utilization and storage (CGUS) site:A review[J]. Science China:Earth Sciences,2023,53(9):1937−1957.
[75] WANG Jianqiang,YUAN Yong,CHEN Jianwen,et al. Geological conditions and suitability evaluation for CO2 geological storage in deep saline aquifers of the Beibu Gulf Basin (South China)[J]. Energies,2023,16(5):2360.
[76] LI Yang,WANG Rui,ZHAO Qingmin,et al. A CO2 storage potential evaluation method for saline aquifers in a petroliferous basin[J]. Petroleum Exploration and Development,2023,50(2):484−491.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons