•  
  •  
 

Coal Geology & Exploration

Abstract

Objective Carbon capture, utilization, and storage (CCUS) technology serves as a key method for carbon neutrality. However, large-scale engineering applications of CCUS are still confronted with serious challenges of environmental risks. Therefore, systematic environmental risk assessment plays an essential role in ensuring the environmental safety and social acceptability of CO2 geological storage projects. Methods Targeting the CO2 geological storage project combined with overlying coal mining in Zhengning County, Gansu Province, this study performed the environmental risk assessment of CO2 leakage based on the requirements of the Technical Guideline on Environmental Risk Assessment for Carbon Dioxide Capture, Utilization, and Storage (on Trial) (hereinafter referred to as the Guideline). Initially, this study identified the environmental risks associated with the project using the features, events, and processes (FEP) method. Then, based on the risk identification results, this study, through expert workshops, assessed the risks of CO2 leakage to environmental media and beings using the risk matrix-based assessment method recommended in the Guideline. Finally, targeted recommendations for risk management were proposed according to the assessment results.Results and Conclusions The results reveal low to ultra-low, acceptable environmental risks to receptors, except for the medium to high, unacceptable risk of blowout events to the surface atmosphere. The medium risk was reduced to a low, acceptable risk level after the implementation of targeted prevention and control measures such as enhancing wellbore integrity, installing wellhead devices matched with formation pressure, and space-atmosphere-surface-underground intelligent collaborative responses. Based on the environmental risk assessment results, this study constructed a phased prevention and control system, including strengthening wellbore integrity before CO2 injection, implementing dynamic regulation and response during CO2 injection, and establishing atmosphere-surface coordinated monitoring during CO2 storage. This will provide risk management and control for the safe operation of CO2 geological storage projects.

Keywords

CO2 geological storage, coal mining, environmental risk assessment, the features, events, and processes (FEP), risk matrix method

DOI

10.12363/issn.1001-1986.25.05.0362

Reference

[1] 李小春,方志明,魏宁,等. 我国CO2捕集与封存的技术路线探讨[J]. 岩土力学,2009,30(9):2674−2678.

LI Xiaochun,FANG Zhiming,WEI Ning,et al. Discussion on technical roadmap of CO2 capture and storage in China[J]. Rock and Soil Mechanics,2009,30(9):2674−2678.

[2] 刁玉杰,马鑫,李旭峰,等. 咸水层CO2地质封存地下利用空间评估方法研究[J]. 中国地质调查,2021,8(4):87−91.

DIAO Yujie,MA Xin,LI Xufeng,et al. Evaluation methods of underground space utilization for CO2 geological storage in deep saline aquifers[J]. Geological Survey of China,2021,8(4):87−91.

[3] 桑树勋,刘世奇,朱前林,等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报,2023,48(7):2700−2716.

SANG Shuxun,LIU Shiqi,ZHU Qianlin,et al. Research progress on technical basis of synergy between CO2 geological storage potential and energy resources[J]. Journal of China Coal Society,2023,48(7):2700−2716.

[4] MAT LATIF W M S,SABDULLAH N M,AENUN S N,et al. A review of global carbon capture and storage (CCS) and carbon capture,utilization,and storage (CCUS)[J]. E3S Web of Conferences,2024,516:01009.

[5] 张一楠,熊小鹤,周寅聪,等. CO2捕集、利用及封存技术研究进展[J/OL]. 煤炭学报,2024:1–21 [2024-12-03]. https://link.cnki.net/doi/10.13225/j.cnki.jccs.2024.1282

ZHANG Yinan,XIONG Xiaohe,ZHOU Yincong,et al. Research progress of CO2 capture,utilization and storage technology[J/OL]. Journal of China Coal Society,2024:1–21 [2024-12-03]. https://link.cnki.net/doi/10.13225/j.cnki.jccs.2024.1282.

[6] 刘贵洲,方瑞瑞,窦立荣,等. 中国CCS/CCUS发展瓶颈与应对策略[J]. 天然气与石油,2024,42(5):8−14.

LIU Guizhou,FANG Ruirui,DOU Lirong,et al. Bottlenecks and response strategies for the development of CCS/CCUS in China[J]. Natural Gas and Oil,2024,42(5):8−14.

[7] 李小春,刘延锋,白冰,等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报,2006,25(5):963−968.

LI Xiaochun,LIU Yanfeng,BAI Bing,et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(5):963−968.

[8] 刁玉杰,刘廷,魏宁,等. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质,2023,50(3):943−951.

DIAO Yujie,LIU Ting,WEI Ning,et al. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China,2023,50(3):943−951.

[9] 禹林. 二氧化碳深部盐水层地质封存物理模拟探索性研究[D]. 北京:北京交通大学,2010.

YU Lin. Exploratory research on technology of physical simulation of carbon dioxide geological storage in deep saline aquifer[D]. Beijing:Beijing Jiaotong University,2010.

[10] 姚悦,吕昊东,彭雪婷,等. 全球碳管理发展态势与技术前沿进展[J]. 洁净煤技术,2024,30(10):32−40.

YAO Yue,LYU Haodong,PENG Xueting,et al. Development trends and technological frontiers of global carbon management[J]. Clean Coal Technology,2024,30(10):32−40.

[11] 李琦,刘桂臻,李小春,等. 多维度视角下CO2捕集利用与封存技术的代际演变与预设[J]. 工程科学与技术,2022,54(1):157−166.

LI Qi,LIU Guizhen,LI Xiaochun,et al. Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective[J]. Advanced Engineering Sciences,2022,54(1):157−166.

[12] 李小春,张九天,李琦,等. 中国碳捕集、利用与封存技术路线图(2011版)实施情况评估分析[J]. 科技导报,2018,36(4):85−95.

LI Xiaochun,ZHANG Jiutian,LI Qi,et al. Implementation status and gap analysis of China’s carbon dioxide capture,utilization and geological storage technology roadmap (2011 edition)[J]. Science & Technology Review,2018,36(4):85−95.

[13] LI Bin,LI Qi. Coupled FEM–DEM modeling of permeability evolution in rough fractured shale during shearing under varying confining pressures[J]. Journal of Rock Mechanics and Geotechnical Engineering,2025

[14] 桑树勋,刘世奇,陆诗建,等. 工程化CCUS全流程技术及其进展[J]. 油气藏评价与开发,2022,12(5):711−725.

SANG Shuxun,LIU Shiqi,LU Shijian,et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development,2022,12(5):711−725.

[15] LI Qi,LIU Guizhen. Risk assessment of the geological storage of CO2:A review[M]//VISHAL V,SINGH T. Geologic carbon sequestration. Cham:Springer International Publishing,2016:249–284.

[16] LI Bin,HUANG Wei,LI Xiaying,et al. A review of CO2 leakage along faults in CCUS:Theories,experiments,and models[J]. Gas Science and Engineering,2025,139:205641.

[17] 石晖,刘兰翠,李琦. CO2地质封存与高放射性核废物地中处置的地质环境影响对比[J]. 中国人口·资源与环境,2015,25(5):203−207.

SHI Hui,LIU Lancui,LI Qi. A comparative study of geo–environmental impacts of CO2 geological storage and high level nuclear waste geo–disposal[J]. China Population,Resources and Environment,2015,25(5):203−207.

[18] 景萌,刘桂臻,李琦,等. 基于社会网络分析方法的二氧化碳地质封存风险传染特征研究[J]. 高校地质学报,2023,29(1):100−109.

JING Meng,LIU Guizhen,LI Qi,et al. Risk transmission characteristics of carbon dioxide geological storage based on social network analysis[J]. Geological Journal of China Universities,2023,29(1):100−109.

[19] 柏明星,张志超,白华明,等. 二氧化碳地质封存系统泄漏风险研究进展[J]. 特种油气藏,2022,29(4):1−11.

BAI Mingxing,ZHANG Zhichao,BAI Huaming,et al. Progress in leakage risk study of CO2 geosequestration system[J]. Special Oil & Gas Reservoirs,2022,29(4):1−11.

[20] 李琦,蔡博峰,陈帆,等. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程,2019,37(2):13−21.

LI Qi,CAI Bofeng,CHEN Fan,et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering,2019,37(2):13−21.

[21] 李琦,刘桂臻,蔡博峰,等. 二氧化碳地质封存环境风险评估的空间范围确定方法研究[J]. 环境工程,2018,36(2):27−32.

LI Qi,LIU Guizhen,CAI Bofeng,et al. Principle and methodology of determining the spactial range of environmental risk assessment of carbon dioxide geological storage[J]. Environmental Engineering,2018,36(2):27−32.

[22] CARRO A,CHACARTEGUI R,TEJADA C,et al. FMEA and risks assessment for thermochemical energy storage systems based on carbonates[J]. Energies,2021,14(19):6013.

[23] HNOTTAVANGE–TELLEEN K. Risk management at the Illinois Basin–Decatur Project:A FEPs–based approach[J]. Greenhouse Gases:Science and Technology,2014,4(5):604−616.

[24] ORAEE–MIRZAMANI B,COCKERILL T,MAKUCH Z. Risk assessment and management associated with CCS[J]. Energy Procedia,2013,37:4757−4764.

[25] 景萌,李琦,刘桂臻,等. 二氧化碳地质封存风险识别方法与案例应用[J]. 环境工程学报,2024,18(10):2719−2728.

JING Meng,LI Qi,LIU Guizhen,et al. CO2 geological storage risk identification:Methods and application[J]. Chinese Journal of Environmental Engineering,2024,18(10):2719−2728.

[26] 李琦,赵楠,刘兰翠,等. 澳大利亚Gorgon二氧化碳咸水层封存项目环境风险评价方法[J]. 环境工程,2019,37(2):22−26.

LI Qi,ZHAO Nan,LIU Lancui,et al. Environmental risk assessment method for geologic carbon dioxide storage:Case study of Australian Gorgon project[J]. Environmental Engineering,2019,37(2):22−26.

[27] CONDOR J,UNATRAKARN D,WILSON M,et al. A comparative analysis of risk assessment methodologies for the geologic storage of carbon dioxide[J]. Energy Procedia,2011,4:4036−4043.

[28] WALKE R,METCALFE R,LIMER L,et al. Experience of the application of a database of generic Features,Events and Processes (FEPs) targeted at geological storage of CO2[J]. Energy Procedia,2011,4:4059−4066.

[29] 王光付,李阳,王锐,等. 二氧化碳地质封存与利用新进展[J]. 石油与天然气地质,2024,45(4):1168−1179.

WANG Guangfu,LI Yang,WANG Rui,et al. Recent advances in geological carbon dioxide storage and utilization[J]. Oil & Gas Geology,2024,45(4):1168−1179.

[30] 许江,蒋石宇,彭守建,等. 不同初始储层压力下CO2驱替CH4试验研究[J]. 煤田地质与勘探,2025,53(4):94−105.

XU Jiang,JIANG Shiyu,PENG Shoujian,et al. An experimental study of CH4 displacement by CO2 under varying initial reservoir pressures[J]. Coal Geology & Exploration,2025,53(4):94−105.

[31] 杨伟利,王毅,王传刚,等. 鄂尔多斯盆地多种能源矿产分布特征与协同勘探[J]. 地质学报,2010,84(4):579−586.

YANG Weili,WANG Yi,WANG Chuangang,et al. Distribution and co–exploration of multiple energy minerals in Ordos Basin[J]. Acta Geologica Sinica,2010,84(4):579−586.

[32] 高士岗,李臣,辛德林,等. 矿权重叠区煤–气协同开发走廊规划及数值模拟研究[J]. 煤炭工程,2024,56(10):165−171.

GAO Shigang,LI Chen,XIN Delin,et al. Planning and numerical simulation research on the coal–gas co–development corridor in the overlapping area of mining rights[J]. Coal Engineering,2024,56(10):165−171.

[33] 邵凯,李来新,王东东,等. 鄂尔多斯盆地彬长矿区沉积体系及控气作用[J]. 中国煤层气,2016,13(2):12−15.

SHAO Kai,LI Laixin,WANG Dongdong,et al. Coal–bearing depositional system and CBM controlling role in Binchang mining area of Ordos Basin[J]. China Coalbed Methane,2016,13(2):12−15.

[34] ZHANG P,DOUGHERTY H,SU D,et al. Influence of longwall mining on the stability of gas wells in chain pillars[J]. International Journal of Mining Science and Technology,2020,30(1):3−9.

[35] SU D W H,ZHANG P,VAN DYKE M,et al. Effect of longwall–induced subsurface deformations on shale gas well casing stability under deep covers[J]. International Journal of Mining Science and Technology,2019,29(1):3−8.

[36] MOBERG R,STEWART D B,STACHNIAK D. The IEA Weyburn CO2 monitoring and storage project[M]//GALE J,KAYA Y. Greenhouse gas control technologies–6th International Conference. Oxford:Pergamon,2003:219–224.

[37] 费文斌. 鄂尔多斯盆地二氧化碳深部咸水层封存协同上覆煤矿资源开采的多场耦合分析[D]. 北京:中国科学院大学,2014

[38] LI Qi,FEI Wenbin,LIU Xuehao,et al. Challenging combination of CO2 geological storage and coal mining in the Ordos Basin,China[J]. Greenhouse Gases:Science and Technology,2014,4(4):452−467.

[39] 李琦,石晖,杨多兴. 碳封存项目井喷CO2扩散危险水平分级方法研究[J]. 岩土力学,2016,37(7):2070−2078.

LI Qi,SHI Hui,YANG Duoxing. Classification of hazard levels of carbon dioxide dispersion under a well blowout in a CCS project[J]. Rock and Soil Mechanics,2016,37(7):2070−2078.

[40] 李君,翁力,赵兴雷,等. 神华鄂尔多斯CCS封存场地CO2泄漏预测研究[J]. 化学工程,2015,43(11):11−15.

LI Jun,WENG Li,ZHAO Xinglei,et al. CO2 leakage prediction of Shenhua Erdos CCS site[J]. Chemical Engineering (China),2015,43(11):11−15.

[41] 聂耀武,胡兵,顾雷雨,等. 二氧化碳地质封存协同上覆煤矿开采的安全风险评估数值模拟研究[J]. 岩土力学,2025,46(增刊1):491−506.

NIE Yaowu,HU Bing,GU Leiyu,et al. Numerical simulation on safety risk assessment of coal mining with CO2 geological storage[J]. Rock and Soil Mechanics,2025,46(Sup.1):491−506.

[42] 付晓飞,吴桐,吕延防,等. 油气藏盖层封闭性研究现状及未来发展趋势[J]. 石油与天然气地质,2018,39(3):454−471.

FU Xiaofei,WU Tong,LYU Yanfang,et al. Research status and development trend of the reservoir caprock sealing properties[J]. Oil & Gas Geology,2018,39(3):454−471.

[43] 侯连华,杨帆,杨春,等. 常规油气区带与圈闭有效性定量评价原理及方法[J]. 石油学报,2021,42(9):1126−1141.

HOU Lianhua,YANG Fan,YANG Chun,et al. Principles and methods for quantitatively evaluating the effectiveness of conventional petroleum zones and traps[J]. Acta Petrolei Sinica,2021,42(9):1126−1141.

[44] 唐鑫萍. 泥岩盖层排替压力特征及其影响因素:以三水盆地古近系布三段为例[J]. 录井工程,2021,32(2):122−129.

TANG Xinping. Displacement pressure features of mudstone caprock and its influencing factors:A case of the 3rd Member of Buxin Formation of Paleogene in Sanshui Basin[J]. Mud Logging Engineering,2021,32(2):122−129.

[45] 谢健,魏宁,吴礼舟,等. CO2地质封存泄漏研究进展[J]. 岩土力学,2017,38(增刊1):181−188.

XIE Jian,WEI Ning,WU Lizhou,et al. Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanics,2017,38(Sup.1):181−188.

[46] 赵洪宝,刘一洪,李金雨,等. 采动卸荷与岩层倾角对底板损伤的协同影响效应[J]. 中国矿业大学学报,2022,51(6):1056−1068.

ZHAO Hongbao,LIU Yihong,LI Jinyu,et al. Synergistic effect of mining unloading and rock inclination on floor failure characteristics[J]. Journal of China University of Mining & Technology,2022,51(6):1056−1068.

[47] 杨晨艺,李晓妮,冯希杰,等. 渭河盆地北缘口镇–关山断层的晚第四纪–现今的活动性[J]. 地震地质,2021,43(3):504−520.

YANG Chenyi,LI Xiaoni,FENG Xijie,et al. The Late Quaternary and present–day activities of the Kouzhen–Guanshan fault on the northern boundary of Weihe Graben Basin,China[J]. Seismology and Geology,2021,43(3):504−520.

[48] 扈桂让,李自红,闫小兵,等. 韩城断裂晚第四纪活动性研究[J]. 地震地质,2017,39(1):206−217.

HU Guirang,LI Zihong,YAN Xiaobing,et al. The study of Late Quaternary activity of Hancheng fault[J]. Seismology and Geology,2017,39(1):206−217.

[49] 刘桂臻,李琦,周冏,等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》在胜利油田驱油封存项目上的应用初探[J]. 环境工程,2018,36(2):42−47.

LIU Guizhen,LI Qi,ZHOU Jiong,et al. Discussion on application of “technical guideline on environmental risk assessment for carbon dioxide capture,utilization and storage (on trial)” in Sinopec Shengli CO2–EOR project[J]. Environmental Engineering,2018,36(2):42−47.

[50] PRESTON C,MONEA M,JAZRAWI W,et al. IEA GHG Weyburn CO2 monitoring and storage project[J]. Fuel Processing Technology,2005,86(14/15):1547−1568.

[51] PAULLEY A,METCALFE R,LIMER L. Systematic FEP and scenario analysis to provide a framework for assessing long–term performance of the Krechba CO2 storage system at In Salah[J]. Energy Procedia,2011,4:4185−4192.

[52] LI Qi,LI Xiaying,LIU Guizhen,et al. Application of China’s CCUS environmental risk assessment technical guidelines (exposure draft) to the Shenhua CCS project[J]. Energy Procedia,2017,114:4270−4278.

[53] 缺乏期卷页码信息

SAVAGE D,MAUL P R,BENBOW S J,et al. A generic FEP database for the assessment of long–term performance and safety of the geological storage of CO2[J]. BMJ,2004

[54] 曹丽斌,赵学涛,蔡博峰,等. 二氧化碳捕集、利用与封存环境风险问卷调查研究[J]. 环境工程,2018,36(2):6−9.

CAO Libin,ZHAO Xuetao,CAI Bofeng,et al. Questionnaire survey on environmental risk assessment for carbon dioxide capture,utilization and storage[J]. Environmental Engineering,2018,36(2):6−9.

[55] 周军平,田时锋,鲜学福,等. 不可采煤层CO2封存断层活化机制分析[J]. 地下空间与工程学报,2019,15(5):1362−1369.

ZHOU Junping,TIAN Shifeng,XIAN Xuefu,et al. Analysis on fault–reactivation for CO2 sequestration in unminable coal seams[J]. Chinese Journal of Underground Space and Engineering,2019,15(5):1362−1369.

[56] 郭少坤,李军,连威,等. CCUS地质封存井筒完整性研究进展及发展建议[J]. 石油钻探技术,2025,53(1):144−154.

GUO Shaokun,LI Jun,LIAN Wei,et al. Research progress and development suggestions on wellbore integrity for CCUS geological storage[J]. Petroleum Drilling Techniques,2025,53(1):144−154.

[57] ZHANG Weicheng,LIAO Wenyu,ECKERT A,et al. Wellbore integrity evaluation for CO2 sequestration wells:An integrated experimental,geochemical,and numerical investigation[C]//56th U. S. Rock Mechanics/Geomechanics Symposium. Santa Fe:ARMA,2022:ARMA–2022–0816.

[58] 刘向斌,黄伟明,马文海,等. 水驱老井转CCUS注入井风险评价方法[J]. 石油钻采工艺,2022,44(6):752−757.

LIU Xiangbin,HUANG Weiming,MA Wenhai,et al. Risk evaluation method for converting previous water injection wells to CCUS injection wells[J]. Oil Drilling & Production Technology,2022,44(6):752−757.

[59] ZULQARNAIN M,ZEIDOUNI M,HUGHES R G. Risk based approach to identify the leakage potential of wells in depleted oil and gas fields for CO2 geological sequestration[C]//Carbon Management Technology Conference. Houston:CMTC,2017:CMTC–486032–MS.

[60] 王晓桥,马登龙,夏锋社,等. 封储二氧化碳泄漏监测技术的研究进展[J]. 安全与环境工程,2020,27(2):23−34.

WANG Xiaoqiao,MA Denglong,XIA Fengshe,et al. Research progress on leakage monitoring technology for CO2 storage[J]. Safety and Environmental Engineering,2020,27(2):23−34.

[61] DALEY T M,SOLBAU R D,AJO–FRANKLIN J B,et al. Continuous active–source seismic monitoring of CO2 injection in a brine aquifer[J]. Geophysics,2007,72(5):A57−A61.

[62] MECKEL T A,HOVORKA S D,KALYANARAMAN N. Continuous pressure monitoring for large volume CO2 injections [C]//9th International Conference on Greenhouse Gas Control Technologies (GHGT–9). Washington D. C. :Gulf Coast Carbon Center,2008.

[63] 王永胜. 中国神华煤制油深部咸水层二氧化碳捕集与地质封存项目环境风险后评估研究[J]. 环境工程,2018,36(2):21−26.

WANG Yongsheng. Research of the environmental risk assessment of CO2 capture and aquifer geologic storage project in China Shenhua coal to oil[J]. Environmental Engineering,2018,36(2):21−26.

[64] 陈新新,马俊杰,李琦,等. 国内地质封存CO2泄漏的生态影响研究[J]. 环境工程,2019,37(2):27−34.

CHEN Xinxin,MA Junjie,LI Qi,et al. Study on ecological impact of CO2 leakage in geological storage in China[J]. Environmental Engineering,2019,37(2):27−34.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.