Coal Geology & Exploration
Abstract
Background Borehole geophysical prospecting technology for coal mines integrates the advantages of both drilling and geophysical prospecting. Accordingly, multiple critical advances have been achieved in its applications to the technologies and equipment for intelligent coal mining in recent years, enabling long-distance, relatively high-precision geological exploration. This technology plays an increasingly important role in a range of fields, including deep mineral resource exploration and the reconnaissance surveys of hidden disaster-causing factors, providing robust support for safe and efficient coal mining. Advances This study systematically reviews the development history of borehole geophysical prospecting technology, elaborating advances in research on the methodology, theories, and inversion imaging of various techniques, including borehole transient electromagnetics (TEM), borehole radar, borehole direct current resistivity, cross-hole electrical resistivity tomography, borehole seismology, borehole natural gamma-ray logging, and multi-source borehole data fusion. These techniques offer distinct advantages in terms of the identification of low-resistivity anomalies, the detection of high-resolution interfaces, lithological classification, and the detection of hydraulically conductive structures. In combination with the demand for practical applications in coal mines, these techniques have achieved significant results in the detection of goaves, faults, collapse columns, and water yield anomalies, as well as the evaluation of grouting effects. Prospects This study proposes future prospects for the development of borehole geophysical prospecting technology, presenting three major development directions. First, it is recommended to establish a technical system of multi-field coupling coupled with coordinated exploration. To this end, it is necessary to develop self-adaptive denoising algorithms for strong interference environments and construct accurate full-space field propagation models. These efforts will improve the detection accuracy from a meter to a decimeter scale while also promoting the collaborative observation and coupling analysis of multiple fields, such as electromagnetic and wave fields. Second, it is advisable to conduct R&D of intelligent equipment for borehole geophysical prospecting technology. To achieve this, full-data acquisition should be adopted to enhance weak signals, and omnidirectional 3D detection should be developed. Furthermore, it is necessary to address key technical bottlenecks, such as drill rode materials, noise suppression, and data transmission, and to advance the R&D of equipment for measurement while drilling. Third, fine-scale inversion imaging and multi-method integration should be strengthened. Specifically, it is necessary to achieve rapid, joint inversion based on big data; build multi-parameter, dynamic monitoring and early-warning platforms; deepen the application of artificial intelligence algorithms in data processing, and enhance the adaptability and accuracy of borehole geophysical prospecting technology under complex geological conditions. The results of this study will provide more robust support for efficient coal exploration, along with the prevention and control of mine disasters.
Keywords
borehole geophysical prospecting, electromagnetic borehole geophysics, electrical borehole geophysics, seismic borehole geophysics, borehole natural gamma-ray logging, multi-source data fusion
DOI
10.12363/issn.1001-1986.25.10.0795
Recommended Citation
LI Ping, WEI Rong, FAN Tao,
et al.
(2025)
"Advances in research and future prospects of borehole geophysical prospecting technology for coal mines,"
Coal Geology & Exploration: Vol. 53:
Iss.
12, Article 22.
DOI: 10.12363/issn.1001-1986.25.10.0795
Available at:
https://cge.researchcommons.org/journal/vol53/iss12/22
Reference
[1] “十四五”矿山安全生产规划[J]. 中国安全生产,2022,17(10):5.
[2] 王国法. 加快煤矿智能化发展 建设智能+绿色煤炭工业新体系[J]. 中国煤炭工业,2020(4):8−15
[3] 国家矿山安全监察局. 矿山隐蔽致灾因素普查规范 第2部分:煤矿:KA/T 22.2—2024[S]. 北京:应急管理出版社,2024.
[4] TIKHONOV A N. On the solution of ill–posed problems and the method of regularization[J]. Doklady Akademii Nauk SSSR,1963,151(3):501−504.
[5] WAIT J R. Transient electromagnetic propagation in a conducting medium[J]. Geophysics,1951,16(2):213−221.
[6] NABIGHIAN M N. Quasi-static transient response of a conducting half-space:an approximate representation[J]. Geophysics,1979,44(10):1700−1705.
[7] TARANTOLA A. Linearized inversion of seismic reflection data[J]. Geophysical Prospecting,1984,32(16):998–1015.
[8] DANIELS J J,DYCK A V. Borehole resistivity and electromagnetic methods applied to mineral exploration[J]. IEEE Trans. on Geosci. & Remote Sensing,1984,22(1):80–87.
[9] MUNSON D C,O'BRIEN J D,JENKINS W K. A tomographic formulation of spotlight-mode synthetic aperture radar[J]. Proceedings of the IEEE,1983,71(8):917−925.
[10] SCHNEIDER W A. Integral formulation for migration in two and three dimensions[J]. Geophysics,1978,43(1):49−76.
[11] STOLT R H. Migration by fourier transform[J]. Geophysics,1978,43(1):23−48.
[12] BAYSAL E,KOSLOFF D D,SHERWOOD J W C. Reverse-time migration[J]. Geophysics,1983,48(11):1514−1524.
[13] TRONICKE J,HAMANN G. Vertical radar profiling:Combined analysis of traveltimes,amplitudes,and reflections[J]. Geophysics,2014,79(4):H23−H35.
[14] A. И. 查博罗夫斯基. 苏联的电法勘探工作[J]. 朱文泉译. 物探与化探,1958(3):10−12
[15] ΓPAЧCB А А. 利用电法勘探预测煤矿区地球动力现象的可能性[J]. 庐冰译. 国外煤田地质,1997(1):33−37
[16] BLEIL D F. Induced polarization:A method of geophysical prospecting[J]. Geophysics,1953,18(3):636−661.
[17] PELTON W H,RIJO L,SWIFT C M. Inversion of two–dimensional resistivity and induced–polarization data[J]. Geophysics,1978,43(4):788−803.
[18] BRACE W F,ORANGE A S. Electrical resistivity changes in saturated rocks during fracture and frictional sliding[J]. Journal of Geophysical Research,1968,73(4):1433−1445.
[19] HIMA H,SAKAYAMA T. Resistivity tomography:An approach to 2-D resistivity inverse problems[J]. 57th SEG,Expanded Abstracts,1987(1):59−61.
[20] FINNIE I,BAILEY J J. An experimental study of drill–string vibration[J]. Journal of Engineering for Industry,1960,82(2):129−135.
[21] BAILEY J R. Continuous bit positioning system[P]. United States Patent:3817345.
[22] ANCHLIYA A. A review of seismic–while–drilling (SWD) techniques:A journey from 1986 to 2005[C]//SPE Europec/EAGE Annual Conference and Exhibition. Vienna:Society of Petroleum Engineers,2006:SPE–100352–MS.
[23] BESSINGER S L,NELSON M G. Remnant roof coal thickness measurement with passive gamma ray instruments in coal mines[J]. IEEE Transactions on Industry Applications,1993,29(3):562−565.
[24] SHARMA P K P. 2-D nonlinear joint inversion of VLF and VLFR data using simulated annealing[J]. Journal of Applied Geophysics,1998,39(3):155−176.
[25] KNIGHT R. The role of ground penetrating radar and geostatistics in reservoir description[J]. Wireless Communications & Mobile Computing,,1997,16(11):1576−1584.
[26] BEASLEY C W,WARD S H. Three–dimensional mise–à–la–masse modeling applied to mapping fracture zones[J]. Geophysics,1986,51(1):98−113.
[27] RECTOR J W,MARION B P. The use of drill-bit energy as a downhole seismic source[J]. Geophysics,1991,56(5):628−634.
[28] 杜志强,郝以岭,张国龙,等. 方位伽马随钻测井在冀东油田水平井地质导向中的应用[J]. 录井工程,2008,19(1):18−21
DU Zhiqiang,HAO Yiling,ZHANG Guolong,et al. The application of azimuth gamma logging while drilling for the geosteering in the horzizontal wells in Jidong Oilfield[J]. Mud Logging Engineering,2008,19(1):18−21
[29] Schlumberger. Multifunction LWD service EcoScope[DB/OL]. [2015-8-16]. .
[30] Halliburton. GABI Sensor-Gamma/At-Bit Inclination[DB/OL]. [2015-7-13]. .
[31] CUGTEM矿用瞬变电磁仪取得国家煤安认证[J]. 煤炭科学技术,2010,38(10):97.
[32] 董航. 基于VNA的步进频率体制钻孔雷达系统研发[D]. 长春:吉林大学,2010.
DONG Hang. Research and implementation of SFCW borehole radar system based on VNA[D]. Changchun:Jilin University,2010.
[33] 谢付军,许孝庭. 淮北矿区杨庄煤矿井下直流电法技术应用[J]. 江苏煤炭,2001(3):29−31
[34] 胡戈,李文平,程伟,等. 淮南煤田综放开采导水裂隙带发育规律研究[J]. 中国煤炭,2008(5):41−43
HU Ye,LI Wenping,CHENG Wei,et al. Astudy on the development regularity of water leaking fissures in top coal caving longwall faces in Huainan coal field[J]. China Coal,2008(5):41−43
[35] 王肄辉,郭林园,田野. 油气井套管电磁探伤理论研究[J]. 电子测试,2012(6):5−9
Wang Yihui,Guo Linyuan,Tian Ye. Research of theory for defect detection focusing on oil and gas well casings based on electromagnetism[J]. Electronic Test,2012(6):5−9
[36] 徐开志,王璞珺. 油田地下地质与沉积微相研究软件系统[J]. 岩相古地理,1995(2):137−143
XU Kaizhi,WANG Pujun. Industrial mapping software of sedimentary microfacies and petroleum geology[J]. Sedimentary Facies and Palaeogeography,1995(2):137−143
[37] 张绍槐,韩继勇,朱根法. 随钻地震技术的理论及工程应用[J]. 石油学报,1999,20(2):67−72
ZHANG Shaohuai,HAN Jiyong,ZHU Genfa. The engineering application and theory of seismic while drilling[J]. Acta Petrolei Sinica,1999,20(2):67−72
[38] 刘志刚. 隧道地震勘探(TSP)在工程中的应用[J]. 铁道建筑技术,2001(5):1−3
LIU Zhigang. The use of tunnel seismic prospect (TSP) in engineering[J]. Railway Construction Technology,2001(5):1−3
[39] 张鹏. 煤矿井下无缆测井系统的改进及应用[J]. 科技资讯,2010,8(14):90−91
[40] 张杰,邓晓红,谭捍东,等. 地−井瞬变电磁资料矢量交会解释方法[J]. 物探与化探,2015,39(3):572−579
ZHANG Jie,DENG Xiaohong,TAN Handong,et al. A study of vector intersection for borehole transient electromagnetic method[J]. Geophysical and Geochemical Exploration,2015,39(3):572−579
[41] 钟声,王川婴,吴立新,等. 点状不良地质体钻孔雷达响应特征的形状效应正演分析[J]. 岩土力学,2011,32(5):1583−1588
ZHONG Sheng,WANG Chuanying,WU Lixin,et al. Borehole radar response characteristics of point unfavorable geo–bodies:Forward simulation on its geometric effect[J]. Rock and Soil Mechanics,2011,32(5):1583−1588
[42] 张平松,刘盛东,吴荣新,等. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报,2009,28(9):1870−1875
ZHANG Pingsong,LIU Shengdong,WU Rongxin,et al. Dynamic detection of overburden deformation and failure in mining workface by 3D resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1870−1875
[43] 曹权,项伟,贾海梁,等. 跨孔超高密度电阻率法在球状风化花岗岩体探测中的应用[J]. 工程地质学报,2013,21(5):730−735
CAO Quan,XIANG Wei,JIA Hailiang,et al. Application of cross–hole ultra–density resistivity method to detection of spherically weathered granite[J]. Journal of Engineering Geology,2013,21(5):730−735
[44] ZHU Tieyuan,HARRIS J M,BIONDI B. Q–compensated reverse–time migration[J]. Geophysics,2014,79(3):S77−S87.
[45] ARABJAMALOEI R,EDALATKHAN S,JAMSHIDI E,et al. Exact lithologic boundary detection based on wavelet transform analysis and real-time investigation of facies discontinuities using drilling data[J]. Petroleum Science and Technology,2011,29(6):569−578.
[46] 湖北省地质局. 望向地球深部的 “透视眼”——深部矿产资源勘探技术综述 [EB/OL]. (2018-08-15). https://www.cgs.gov.cn/xwl/cgkx/201808/t20180515_465032.html.
[47] Halliburton. M5 Integrated LWD Service[DB/OL]. 2015-07-13. http://www.halliburton.com/premium/ss/Contents/DataSheets/web/H05237.
[48] 李凤,高昭良. 面向土地利用分类的多源遥感数据混合贝叶斯网络分类器[J]. 国土资源遥感,2011(2):47−52
LI Feng,GAO Zhaoliang. A hybrid bayesian network classifier for multi-source remote sensing data in land use classification[J]. Remote Sensing for Land & Resource,2011(2):47−52
[49] 李晓军,李培楠,朱合华,等. 基于贝叶斯克里金的地下空间多源数据建模[J]. 同济大学学报(自然科学版),2014,42(3):406−412
LI Xiaojun,LI Peinan,ZHU Hehua,et al. Geomodeling with integration of multi-source data by bayesian kriging in underground space[J]. Journal of TONGJI University(natural science),2014,42(3):406−412
[50] 米鹏. 信息融合技术在煤矿安全监测系统的应用探讨[J]. 山东煤炭科技,2018,36(2):152−154
MI Peng. Discussion on application of information fusion technology in coal mine safety monitoring system[J]. Shandong Coal Science and Technology,2018,36(2):152−154
[51] 储韬玉. 矿井孔中瞬变电磁测量方法及其应用研究[D]. 徐州:中国矿业大学,2015.
CHU Taoyu. Study on the mine transient electromagnetic method in drilling and its application[D]. Xuzhou:China University of Mining & Technology,2015.
[52] 闫文超. 矿用孔–巷瞬变电磁仪关键技术研究[D]. 北京:煤炭科学研究总院,2018.
YAN Wenchao. Research on the key technology of the mine-used transient electromagnetic instrument for borehole and roadway[D]. Beijing:China Coal Research Institute,2018.
[53] 程久龙,姜国庆,李垚,等. 钻孔瞬变电磁法扫描探测磁芯线圈激励电磁场响应特征[J]. 煤炭学报,2023,48(3):1302−1310
CHENG Jiulong,JIANG Guoqing,LI Yao,et al. Electromagnetic field response characteristics excited by magnetic core coil for borehole TEM with scanning detection[J]. Journal of China Coal Society,2023,48(3):1302−1310
[54] 孙怀凤,张莹莹,赵友超,等. 钻孔瞬变电磁法研究现状综述[J]. 煤田地质与勘探,2022,50(7):85−97
SUN Huaifeng,ZHANG Yingying,ZHAO Youchao,et al. Present study situation review of borehole transient electromagnetic method[J]. Coal Geology & Exploration,2022,50(7):85−97
[55] 陈丁. 矿井全空间巷道孔中瞬变电磁波场特征数值模拟研究[D]. 北京:中国矿业大学(北京),2016.
CHEN Ding. Study on wave field characteristics of drill hole transient electromagnetic in mine roadway whole space using numerical simulation[D]. Beijing:China University of Mining & Technology,Beijing,2016.
[56] 王世睿. 隧道掌子面—钻孔瞬变电磁超前探测方法与试验研究[D]. 济南:山东大学,2016.
WANG Shirui. Research on tunnel face-borehole transient electromagnetic method and experiment for advanced detection[D]. Jinan:Shandong University,2016.
[57] 李大俊,翁爱华,杨悦,等. 地−井瞬变电磁三维交错网格有限差分正演及响应特征[J]. 吉林大学学报(地球科学版),2017,47(5):1552−1561
LI Dajun,WENG Aihua,YANG Yue,et al. Three-dimension forward modeling and characteristics for surface-borehole transient electromagnetic by using staggered-grid finite difference method[J]. Journal of Jilin University (Earth Science Edition),2017,47(5):1552−1561
[58] 孙怀凤,程铭,宿传玺,等. 隧(巷)道掘进工作面–钻孔瞬变电磁超前探测方法物理模拟试验研究[J]. 煤炭学报,2017,42(8):2110−2115
SUN Huaifeng,CHENG Ming,SU Chuanxi,et al. Tunnel face-borehole transient electromagnetic method and its physical experimental studies[J]. Journal of China Coal Society,2017,42(8):2110−2115
[59] 陈丁,程久龙,王阿明. 矿井全空间孔中瞬变电磁响应积分方程法数值模拟研究[J]. 地球物理学报,2018,61(10):4182−4193
CHEN Ding,CHENG Jiulong,WANG Aming. Numerical simulation of drillhole transient electromagnetic response in mine roadway whole space using integral equation method[J]. Chinese Journal of Geophysics,2018,61(10):4182−4193
[60] 张兆桥. 孔中瞬变电磁探头特性与正反演方法研究[D]. 徐州:中国矿业大学,2022.
ZHANG Zhaoqiao. Study on the characteristics of transient electromagnetic sensors in the hole and the method of forward and inversion[D]. Xuzhou:China University of Mining and Technology,2022.
[61] 张军. 矿井孔中瞬变电磁探测异常响应特征模拟[J]. 煤田地质与勘探,2022,50(8):134−141
ZHANG Jun. Abnormal response characteristic simulation during transient electromagnetic detection in mine borehole[J]. Coal Geology & Exploration,2022,50(8):134−141
[62] 范涛. 矿井巷道–钻孔瞬变电磁二维拟地震反演方法及应用[J]. 煤炭学报,2019,44(6):1804−1816
FAN Tao. Method and application on 2D pseudo–seismic inversion of roadway–borehole transient electromagnetic detection in coal mine[J]. Journal of China Coal Society,2019,44(6):1804−1816
[63] 范涛,李萍,赵兆,等. 钻孔瞬变电磁方法探测越界开采采空区的应用[J]. 煤田地质与勘探,2022,50(1):20−24
FAN Tao,LI Ping,ZHAO Zhao,et al. Application of borehole transient electromagnetic method in detecting the cross-border mining goaf[J]. Coal Geology & Exploration,2022,50(1):20−24
[64] 李静蕊,解海军,孙展雄. 富水构造地质异常体矿井直流电法超前探查响应特征[J]. 能源与环保,2021,43(5):51−56
LI Jingrui,XIE Haijun,SUN Zhanxiong. Response characteristics of direct current method advanced exploration in mine with water rich structural geological anomaly[J]. China Energy and Environmental Protection,2021,43(5):51−56
[65] 吴国培,张莹莹,赵华亮,等. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探,2023,47(4):1024−1032
WU Guopei,ZHANG Yingying,ZHAO Hualiang,et al. One–dimensional inversion of central loop transient electromagnetic data based on transverse constraints[J]. Geophysical and Geochemical Exploration,2023,47(4):1024−1032
[66] FAN Tao,LI Ping,QI Zhipeng,et al. Borehole transient electromagnetic stereo imaging method based on horizontal component anomaly feature clustering[J]. Journal of Applied Geophysics,2022,197:104537.
[67] 程久龙,焦俊俊,陈志,等. 钻孔瞬变电磁法扫描探测RCQPSO–LMO组合算法2.5D反演[J]. 地球物理学报,2024,67(2):781–792.
CHENG Jiulong,JIAO Junjun,CHEN Zhi,et al. 2. 5D inversion of borehole transient electromagnetic method with scanning detection based on RCQPSO–LMO combined algorithm[J]. Chinese Journal of Geophysics,2024,67(2):781–792.
[68] 李瑞友,白细民,张勇,等. 基于小波包分解与GA优化BP神经网络的瞬变电磁反演[J]. 吉林大学学报(地球科学版),2024,54(3):1003−1015
LI Ruiyou,BAI Ximin,ZHANG Yong,et al. Using wavelet packet denoising and BP neural network based on GA optimization for transient electromagnetic inversion[J]. Journal of Jilin University (Earth Science Edition),2024,54(3):1003−1015
[69] 范涛,薛国强,李萍,等. 瞬变电磁长短时记忆网络深度学习实时反演方法[J]. 地球物理学报,2022,65(9):3650−3663
FAN Tao,XUE Guoqiang,LI Ping,et al. TEM real–time inversion based on long–short term memory network[J]. Chinese Journal of Geophysics,2022,65(9):3650−3663
[70] TANG Yu,SU Benyu,YU Jingcun,et al. Research on artificial intelligence inversion methods for advanced detection of mine transient electromagnetic method[J]. Journal of Applied Geophysics,2025,233:105621.
[71] 杨海宁. 钻孔测井雷达信号处理技术研究[D]. 成都:电子科技大学,2016.
YANG Haining. Research on signal processing technology of borehole logging radar[D]. Chengdu:University of Electronic Science and Technology of China,2016.
[72] ZHOU Binzhong,HONG Jianjian,MASON I,et al. Fracture identification by reflected guided borehole radar waves[J]. ASEG Extended Abstracts,2019(1):1−4.
[73] 王选琳,刘柯,郭召昌. 矿用钻孔地质雷达在打通一煤矿井下的试用验证[J]. 山东煤炭科技,2020(10):173−175
WANG Xuanlin,LIU Ke,GUO Zhaochang. Test and verification of mine bprehole geological radar in Datong No. 1 mine[J]. Shandong Coal Science and Technology,2020(10):173−175
[74] 蒋必辞. 近水平钻孔雷达数据处理关键技术及应用研究[D]. 北京:煤炭科学研究总院,2025.
JIANG Bici. Research on key technologies and applications of near horizontal borehole radar data processing[D]. Beijing:China Coal Research Institute,2025.
[75] 李涛涛,许献磊,徐海龙,等. 定向钻孔雷达天线探测平衡分析与配重优化设计[J]. 煤田地质与勘探,2023,51(6):175−184
LI Taotao,XU Xianlei,XU Hailong,et al. Balance analysis and counterweight optimization design for detection with orientated borehole ground penetrating radar antenna[J]. Coal Geology & Exploration,2023,51(6):175−184
[76] WARREN C,GIANNOPOULOS A,GRAY A,et al. A CUDA–based GPU engine for GprMax:Open source FDTD electromagnetic simulation software[J]. Computer Physics Communications,2019,237:208−218.
[77] 刘四新,宋梓豪,程建远,等. 利用钻孔雷达探测煤矿井下顶底板界面的数值模拟研究[J]. 世界地质,2021,40(3):711−720
LIU Sixin,SONG Zihao,CHENG Jianyuan,et al. Numerical simulation research on detecting underground coal mine roof and floor using borehole radar[J]. Global Geology,2021,40(3):711−720
[78] JIANG Bici,CHENG Jianyuan,LI Ping,et al. Using BHR to detect coal seam interface in coal mine[J]. Journal of Applied Geophysics,2023,209:104894.
[79] FISHER E,MC MECHAN G A,ANNAN A P. Acquisition and processing of wide-aperture ground-penetrating radar data[J]. Geophysics,1992,57(3):495−504.
[80] LIU Sixin,LEI Linlin,FU Lei,et al. Application of pre-stack reverse time migration based on FWI velocity estimation to ground penetrating radar data[J]. Journal of Applied Geophysics,2014,107:1−7.
[81] IRVING J D,KNOLL M D,KNIGHT R J. Improving crosshole radar velocity tomograms:a new approach to incorporating high-angle traveltime data[J]. Geophysics,2007,72(4):J31−J41.
[82] 毛立峰. 超宽带电磁法正演模拟及反演成像[D]. 成都:成都理工大学,2007.
MAO Lifeng. The forward simulation and inversion imaging of the ultra wide band electromagnetic method[D]. Chengdu:Chengdu University of Technology,2007.
[83] VIRIEUX J,OPERTÒ S. An overview of full-waveform inversion in exploration geophysics[J]. Geophysics,2009,74(6):WCC1−WCC26.
[84] ALVAREZ J K,KODAGODA S. Application of deep learning image to-image transformation networks to GPR radargrams for sub-surface imaging in infrastructure monitoring[C]// Proceedings of the 2018 IEEE 13th International Conference on Industrial Electronics and Applications. Wuhan,China:IEEE,2018:611-616.
[85] TONG Zheng,GAO Jie,ZHANG Haitao,et al. Recognition,location,measurement,and 3D reconstruction of concealed cracks using convolutional neural networks[J]. Construction and Building Materials,2017,146:775−787.
[86] TONG Zheng,YUAN Dongdong,GAO Jie,et al. Pavement-distress detection using ground-penetrating radar and network in networks[J]. Construction and Building Materials,2020,233:117352.
[87] LIU Bin,REN Yuxiao,LIU Hanchi,et al. GPRInvNet:Deep learning-based ground-penetrating radar data inversion for tunnel linings[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(10):8305−8325.
[88] JI Yintao,ZHANG Fengkai,WANG Jing,et al. Deep neural network-based permittivity inversions for ground penetrating radar data[J]. IEEE Sensors Journal,2021,21(6):8172−8183.
[89] 蒋必辞,程建远,李萍,等. 基于钻孔雷达的透明工作面构建方法[J]. 煤田地质与勘探,2022,50(1):128−135
JIANG Bici,CHENG Jianyuan,LI Ping,et al. Construction method of transparent working face based on borehole radar[J]. Coal Geology & Exploration,2022,50(1):128−135
[90] 王运彬,于师建. 孔内直流电法超前探测正演模拟研究[J]. 煤炭技术,2017,36(3):146−149
WANG Yunbin,YU Shijian. Direct current method forward modeling research of advanced detection in hole[J]. Coal Technology,2017,36(3):146−149
[91] LIU Lei,FAN Tao,LI Yuan,et al. Resistivity detection technology and its application in directional borehole in coal mine[C]//Proceedings of the 8th Academic Conference of Geology Resource Management and Sustainable Development,2020:169–176.
[92] 李果,庞贵艮,吕情绪. 定向钻孔中直流电法探测技术在宽工作面中的应用[J]. 物探化探计算技术,2023,45(2):235−241
LI Guo,PANG Guigen,LYU Qingxu. Application of direct current detection technology in directional drilling in wide working face[J]. Computing Techniques for Geophysical and Geochemical Exploration,2023,45(2):235−241
[93] 胡荣杰,刘盛东,童世杰,等. 孔巷联合并行电法超前探测技术研究[J]. 中国煤炭地质,2024,36(6):68−71
HU Rongjie,LIU Shengdong,TONG Shijie,et al. Research on advanced detection technology with parallel electrical method on hole-roadway[J]. Coal Geology of China,2024,36(6):68−71
[94] 李术才,苏茂鑫,薛翊国,等. 城市地铁跨孔电阻率CT超前地质预报方法研究[J]. 岩石力学与工程学报,2014,33(5):913−920
LI Shucai,SU Maoxin,XUE Yiguo,et al. Study on computed tomography of cross–hole resistivity in urban subway geological prediction[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(5):913−920
[95] 王冰纯,鲁晶津,房哲. 基于伪随机序列的矿井电法监测系统[J]. 煤矿安全,2018,49(12):118−121
WANG Bingchun,LU Jingjin,FANG Zhe. Research on mine electrical monitoring system based on pseudo-random sequence[J]. Safety in Coal Mines,2018,49(12):118−121
[96] BELLMUNT F,MARCUELLO A,LEDO J,et al. Capability of cross–hole electrical configurations for monitoring rapid plume migration experiments[J]. Journal of Applied Geophysics,2016,124:73−82.
[97] ZHOU Wenlong,ZHANG Pingsong,WU Rongxin,et al. Dynamic monitoring the deformation and failure of extra–thick coal seam floor in deep mining[J]. Journal of Applied Geophysics,2019,163:132−138.
[98] 王程,李博凡,吴璋,等. 孔间电阻率监测在注浆效果检测的应用研究[J]. 工矿自动化,2023,49(10):127−132
WANG Cheng,LI Bofan,WU Zhang,et al. Research on the application of inter hole resistivity monitoring in grouting effect detection[J]. Journal of Mine Automation,2023,49(10):127−132
[99] DAILY W,RAMIREZ A,LABRECQUE D,et al. Electrical resistivity tomography of vadose water movement[J]. Water Resources Research,1992,28(5):1429−1442.
[100] LABRECQUE D J,YANG X. Difference inversion of ERT data:A fast inversion method for 3-D in situ monitoring[J]. Journal of Environmental & Engineering Geophysics,2001,6(2):83−89.
[101] NGUYEN F,KEMNA A,ROBERT T,et al. Data-driven selection of the minimum-gradient support parameter in time-lapse focused electric imaging[J]. Geophysics,2016,81(1):A1−A5.
[102] HERMANS T,KEMNA A,NGUYEN F. Covariance-constrained difference inversion of time-lapse electrical resistivity tomography data[J]. Geophysics,2016,81(5):E311−E322.
[103] FIANDACA G,DOETSCH J,VIGNOLI G,et al. Generalized focusing of time-lapse changes with applications to direct current and time-domain induced polarization inversions[J]. Geophysical Journal International,2015,203(2):1101−1112.
[104] LESPARRE N,NGUYEN F,KEMNA A,et al. A new approach for time-lapse data weighting in electrical resistivity tomography[J]. Geophysics,2017,82(6):E325−E333.
[105] HAYLEY K,PIDLISECKY A,BENTLEY L. Simultaneous time-lapse electrical resistivity inversion[J]. Journal of Applied Geophysics,2011,75(2):401−411.
[106] KIM J,YI M,AHN H,et al. 4-D inversion of resistivity monitoring data using L1 norm minimization[C]//Near Surface 2010-16th EAGE European Meeting of Environmental and Engineering Geophysics,2010:cp-164.
[107] LOKE M,DAHLIN T,RUCKER D. Smoothness-constrained time-lapse inversion of data from 3D resistivity surveys[J]. Near Surface Geophysics,2014,12(1):5−24.
[108] KARAOULIS M,KIM J H,TSOURLOS P. 4D active time constrained resistivity inversion[J]. Journal of Applied Geophysics,2011,73(1):25−34.
[109] YI M J,KIM J H,CHUNG S H. Enhancing the resolving power of least-squares inversion with active constraint balancing[J]. Geophysics,2003,68(3):931−941.
[110] KARAOULIS M,REVIL A,WERKEMA D,et al. Time-lapse three-dimensional inversion of complex conductivity data using an active time constrained (ATC) approach[J]. Geophysical Journal International,2011,187(1):237−251.
[111] KIM K J,CHO I K. Time-lapse inversion of 2D resistivity monitoring data with a spatially varying cross-model constraint[J]. Journal of Applied Geophysics,2011,74(2):114−122.
[112] KIM J H,SUPPER R,TSOURLOS P,et al. Four-dimensional inversion of resistivity monitoring data through Lp norm minimizations[J]. Geophysical Journal International,2013,195(3):1640−1656.
[113] LIU Bin,PANG Yonghao,MAO Deqiang,et al. A rapid four-dimensional resistivity data inversion method using temporal segmentation[J]. Geophysical Journal International,2020,221(1):586−602.
[114] 鲁晶津. 工作面采动破坏过程电阻率动态响应特征研究[J]. 工矿自动化,2023,49(1):36–45.
LU Jingjin. Study on dynamic response characteristics of resistivity in mining failure process of working face[J]. Journal of Mine Automation,2023,49(1):36–45.
[115] 崔士波,葛洪魁,陆斌,等. 钻柱振动信号特征及多次波成像[J]. 地球物理学进展,2010,25(2):714−720
CUI Shibo,GE Hongkui,LU Bin,et al. Features of drill string vibration signal and multiples imaging[J]. Progress in Geophysics,2010,25(2):714−720
[116] 陈波,于明,构小婷. BH–RSS旋转导向钻井系统在港1504井的应用[J]. 辽宁化工,2016,45(9):1227−1228
CHEN Bo,YU Ming,GOU Xiaoting. Application of BH–RSS rotary steering drilling system in Gang1504 well[J]. Liaoning Chemical Industry,2016,45(9):1227−1228
[117] CARCIONE J M,CAVALLINI F,MAINARDI F,et al. Time–domain modeling of constant–Q seismic waves using fractional derivatives[J]. Pure and Applied Geophysics,2002,159:1719−1736.
[118] 孙成禹,乔志浩,伍敦仕,等. 常Q衰减介质分数阶波动方程优化有限差分模拟[J]. 地震学报,2017,39(3):343−355
SUN Chengyu,QIAO Zhihao,WU Dunshi,et al. Modeling of wave equation with fractional derivative using optimal finite–difference method in constant–Q attenuation media[J]. Acta Seismologica Sinica,2017,39(3):343−355
[119] 闫文超,崔伟雄,段建华,等. 井-孔联合微震技术在工作面监测中的应用[J]. 煤矿安全,2021,52(11):95−99
YAN Wenchao,CUI Weixiong,DUAN Jianhua,et al. Application of well-hole combined micro -seismic technique in working face monitoring[J]. Safety in Coal Mines,2021,52(11):95−99
[120] 高利军,王海,韩强. 基于电法CT和地震CT的烧变岩含水帷幕注浆效果评价[J]. 能源与环保,2024(6):63−69
GAO Lijun,WANAG Hai,HAN Qiang. Effect evaluation of curtaingrouting in burnt rock aquifer using electrical CT and seismic CT[J]. China Energy and Environmental Protection,2024(6):63−69
[121] CONNOLLY P. Elastic impedance[J]. The Leading Edge,1999,18(4):438−452.
[122] 陆斌. 随钻地震信号特征及分析方法研究[J]. 国际地震动态,2011(3):39−40
[123] 尹奇峰,潘冬明,郭全仕,等. 基于快速模拟退火算法的井中微地震事件定位反演[J]. 地球物理学进展,2019,34(5):1954−1961
YIN Qifeng,PAN Dongming,GUO Quanshi,et al. Inversion of borehole microseismic event location based on fast simulated annealing algorithm[J]. Progress in Geophysics,2019,34(5):1954−1961
[124] 罗腾,冯晅,郭智奇,等. 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演[J]. 吉林大学学报(地球科学版),2019,49(5):1466−1476
LUO Teng,FENG Xuan,GUO Zhiqi,et al. Seismic inversion of anisotropy parameters of fractured reservoirs by simulated annealing and particle swarm optimization[J]. Journal of Jilin University (Earth Science Edition),2019,49(5):1466−1476
[125] WEATHERFORD. HAGR-High-temperature Azimuthal Gamma Ray sensor[DB/OL],2019-03-05. https://www.weatherford.com/en/documents/technical-specification-sheet/products-and-services/drilling/hagr-high-temperature-azimuthal-gamma-ray-sensor/.
[126] 王阳. 随钻方位伽马测井正演模拟方法研究[D]. 青岛:中国石油大学(华东),2021.
WANG Yang. Research on forward simulation method for azimuthal gamma logging while drilling[D]. Qingdao:China University of Petroleum (East China),2021.
[127] 陈龙,陈刚,张冀冠. 矿用随钻动态方位伽马仪器的研制与应用[J]. 煤田地质与勘探,2022,50(1):86−91
CHEN Long,CHEN Gang,ZHANG Jiguan. Development and application of a mine-used dynamic azimuth gamma instrument while drilling[J]. Coal Geology & Exploration,2022,50(1):86−91
[128] 雷芬丽,许平. 基于小波变换的测井多尺度分层研究[J]. 上海国土资源,2015,36(1):76−79
LEI Fenli,XU Ping. Demarcation of stratigraphy using multi-scale well logging based on wavelet transform[J]. Shanghai Land & Resources,2015,36(1):76−79
[129] MUKHERJEE B,SRIVARDHAN V,ROY P N S. Identification of formation interfaces by using wavelet and Fourier transforms[J]. Journal of Applied Geophysics,2016,128(16):140−149.
[130] 周锦程,杨清亮,张伟. 基于高斯小波变换的测井曲线自动分层模型[J]. 黔南民族师范学院学报,2017,37(4):31−39
ZHOU Jincheng,YANG Qingliang,ZHANG Wei. Automatic stratification model of well logging curves based on gaussian wavelet transform[J]. Journal of Qiannan Normal University for Nationalities,2017,37(4):31−39
[131] 张东晓,陈云天,孟晋. 基于循环神经网络的测井曲线生成方法[J]. 石油勘探与开发,2018,45(4):598−607
ZHANG Dongxiao,CHEN Yuntian,MENG Jin. Synthetic well logs generation via recurrent neural networks[J]. Petroleum Exploration and Development,2018,45(4):598−607
[132] ZHANG Lei,WANG Jian,JIAO Ruili,et al. Delineation of bed boundaries of array induction logging curves using deep learning[J]. Applied Geophysics,2021,18(1):45−53.
[133] 袁超. 随钻方位伽马测井方法基础研究[D]. 东营:中国石油大学(华东),2012.
YUAN Chao. Fundamental study on LWD azimuthal gamma ray well logging[D]. Dongying:China University of Petroleum (East China),2012.
[134] 邵才瑞,曹先军,陈国兴,等. 随钻伽马测井快速正演算法及地质导向应用[J]. 地球物理学报,2013,56(11):3932−3942
SHAO Cairui,CAO Xianjun,CHEN Guoxing,et al. A fast forward algorithm for LWD gamma–ray response and its geosteering application[J]. Chinese Journal of Geophysics,2013,56(11):3932−3942
[135] 杨雪,潘保芝,汪凯斌,等. 随钻方位伽马测井快速正演及定向井动态监测[J]. 地球物理学进展,2016,31(1):403−410
YANG Xue,PAN Baozhi,WANG Kaibin,et al. Fast forward method for LWD azimuth gamma–ray and dynamic monitoring of directional wells[J]. Progress in Geophysics,2016,31(1):403−410
[136] 李超然. 自然伽马随钻测井正演成像的蒙卡模拟[D]. 长春:吉林大学,2018.
LI Chaoran. Monte Carlo simulation of logging–while–drilling natural gamma ray imaging[D]. Changchun:Jilin University,2018.
[137] WANG Jiaxin,CRAWFORD J,MONTGOMERY M. Modeling and inversion with azimuthal gamma ray for a better geosteering decision–making[C]//SPE Annual Technical Conference and Exhibition. Virtual:Society of Petroleum Engineers,2020:SPE–201320–MS.
[138] 王磊,范宜仁,袁超,等. 随钻方位电磁波测井反演模型选取及适用性[J]. 石油勘探与开发,2018,45(5):914−922
WANG Lei,FAN Yiren,YUAN Chao,et al. Selection criteria and feasibility of the inversion model for azimuthal electromagnetic logging while drilling (LWD)[J]. Petroleum Exploration and Development,2018,45(5):914−922
[139] 胡旭飞,范宜仁,吴非,等. 随钻方位电磁波测井多参数快速反演[J]. 地球物理学报,2018,61(11):4690−4701
HU Xufei,FAN Yiren,WU Fei,et al. Fast multiple parameter inversion of azimuthal LWD electromagnetic measurement[J]. Chinese Journal of Geophysics,2018,61(11):4690−4701
[140] 王磊,范宜仁,操应长,等. 大斜度井/水平井随钻方位电磁波测井资料实时反演方法[J]. 地球物理学报,2020,63(4):1715−1724
WANG Lei,FAN Yiren,CAO Yingchang,et al. Real–time inversion of logging–while–drilling azimuthal electromagnetic measurements acquired in high–angle and horizontal wells[J]. Chinese Journal of Geophysics,2020,63(4):1715−1724
[141] GESSNER K,GALLARDO L A,WEDIN F,et al. Crustal structure of the northern Menderes Massif,western Turkey,imaged by joint gravity and magnetic inversion[J]. International Journal of Earth Sciences,2016,105(7):2133−2148.
[142] SUN Jiajia,LI Yaoguo. Joint inversion of multiple geophysical data using guided fuzzy c-means clustering[J]. Geophysics,2016,81(3):ID37−ID57.
[143] SUN Jiajia,LI Yaoguo. Joint inversion of multiple geophysical and petrophysical data using generalized fuzzy clustering algorithms[J]. Geophysical Journal International,2017,208(2):1201−1216.
[144] COLOMBO D,ROVETTA D. Coupling strategies in multi-parameter geophysical joint inversion[J]. Geophysical Journal International,2018,215(2):1171−1184.
[145] ASTIC T,OLDENBURG D W. A framework for petrophysically and geologically guided geophysical inversion using a dynamic Gaussian mixture model prior[J]. Geophysical Journal International,2019,219(3):1989−2012.
[146] ASTIC T,HEAGY L J,OLDENBURG D W. Petrophysically and geologically guided multi-physics inversion using a dynamic Gaussian mixture model[J]. Geophysical Journal International,2021,224(1):40−68.
[147] 李桐林,张铬哲,朴英哲,等. 部分区域约束下的交叉梯度多重地球物理数据联合反演[J]. 地球物理学报,2016,59(8):2979−2988
LI Tonglin,ZHANG Mingzhe,PIAO Yingzhe,et al. Multiple joint inversion of geophysical data with sub-region crossgradient constraints[J]. Chinese Journal of Geophysics,2016,59(8):2979−2988
[148] 刘文明,刘万金,裴跟弟. 多属性神经网络反演预测煤层顶板岩性[J]. 煤田地质与勘探,2016,44(1):103−106
LIU Wenming,LIU Wanjin,PEI Gendi. Seismic multi-attributes inversion using neural network and its application in predicting lithology of coal seam’s roof[J]. Coal Geology & Exploration,2016,44(1):103−106
[149] 李启成,郭雷,孙颍川. 地震属性融合技术在煤层厚度预测中的研究[J]. 地球物理学进展,2017,32(5):2014−2020
LI Qicheng,GUO Lei,SUN Yingchuan. Seismic attributes fusion and its research in predicting thickness of coal[J]. Progress in Geophysics,2017,32(5):2014−2020
[150] GAO Ji,ZHANG Haijiang. An efficient sequential strategy for realizing cross-gradient joint inversion:method and its application to 2D cross borehole seismic traveltime and DC resistivity tomography[J]. Geophysical Journal International,2018,213(2):1044−1055.
[151] ZHANG Rongzhe,LI Tonglin,LIU Cai. Joint inversion of multiphysical parameters based on a combination of cosine dot-gradient and joint total variation constraints[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:5902710.
[152] 李萍,卫蓉,范涛,等. 快掘工作面定向长钻孔孔中综合物探超前探测关键技术研究[J/OL]. 煤炭科学技术. 2025-10-27. https://link.cnki.net/urlid/11.2402.TD.20251027.0942.005.
LI Ping,WEI Rong,FAN Tao,et al. Research on key technologies of comprehensive borehole geophysical prospecting for advanced detection in directional long boreholes of fast excavation working face[J]. Coal Science and Technology,2025-10-27. https://link.cnki.net/urlid/11.2402.TD.20251027.0942.005.
[153] 王新苗. 智能开采工作面精细地质建模研究:以黄陵某工作面为例[D]. 北京:煤炭科学研究总院,2021.
WANG Xinmiao. Research on fine geological modeling of intelligent mining face taking a face in Huangling as an example[D]. Beijing:China Coal Research Institute,2021.
[154] 郭亦伟. 面向三维成矿预测的多源异构钻孔数据信息抽取与结构化[D]. 长沙:中南大学,2024.
GUO Yiwei. Information extraction and structuring of multi-source heterogeneous borehole data for three-dimensional mineralization prediction[D]. ChangSha:Central South University,2024.
[155] 高康平. 基于多源随钻信息响应的岩体强度参数感知研究[D]. 西安:长安大学,2023.
GAO Kangping. Rock mass strength parameter perception based on multi-source information while drilling response[D]. Xi’an:Chang’an University,2023.
[156] 谷保泽,代振华,李明星,等. 透明地质保障技术构建方法:以乌海矿区为例[J]. 煤田地质与勘探,2022,50(1):136−143
GU Baoze,DAI Zhenhua,LI Mingxing,et al. Construction method on transparent geological guarantee technologies:A case study of Wuhai mining area[J]. C
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons