•  
  •  
 

Coal Geology & Exploration

Authors

LI Jun, National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou 234111, China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234111, ChinaFollow
GUI Herong, National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou 234111, China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234111, ChinaFollow
DING Pengfei, Shanxi Province Coal Geology 115 Exploration Institute Co., LTD., Datong 037100, China
CHEN Yongqing, Anhui Hengyuan Coal & Electric Co., Ltd., Huaibei 235157, China
WAN Heyong, Huaibei Mining Co., Ltd. Luling Coal Mine, Suzhou 234113, China
LI Weiqi, Tiandi Co. Ltd., Beijing 100013, China
HUANG Dawei, Anhui Changfeng Pharmaceutical Co., Ltd, Tongling 244153, China
PENG Weihua, National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou 234111, China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234111, China
HU Yang, National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou 234111, China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234111, China
GUO Yan, National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou 234111, China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234111, China

Abstract

Objective The Datong mining area in Shanxi Province of China faces serious threats from goaf water hazards, while the goaf water drainage is constrained by environmental protection policies. Therefore, the reutilization of goaf water serves as an effective approach to eliminating mine water hazards, protecting water environments, and mitigating water scarcity in the mining area. Methods This study investigated goaf water from shallow coal seams in the Datong mining area. Based on water quality assessment theories and a range of hydrogeochemical indices, including saturation index (SI), chloro-alkaline index (CAI), and sodium adsorption ratio (SAR), this study conducted a joint determination of the conventional physicochemical characteristics, hydrochemical components, and water pollution indicators of the goaf water. Accordingly, the water quality characteristics and their genetic mechanisms were analyzed, and the characteristic pollutant types under different water standards were determined. By combining practical application cases, this study proposed a technical pathway for the reutilization of goaf water in the Datong mining area. Results and Conclusions The goaf water in the Datong mining area exhibits hydrochemical types dominated by Na-SO4 and Ca-SO4, consistent with those of typical mine water in the coal base of northwestern China. The goaf water shows average total dissolved solids (TDS) of 2 190 mg/L and electrical conductivity (EC) of 2 716 μS/cm, indicating high salinity and ion concentrations. The SIs, ion concentration proportions, CAI, and Gibbs diagrams reveal that the hydrochemical components of the goaf water are jointly controlled by rock weathering, as well as evaporation and concentration, with major chemical components formed primarily by the alternating cation adsorption and the dissolution and leaching effects. Based on the fundamental principle of source protection, classified treatment, and comprehensive utilization, the goaf water in the Datong mining area was classified as high-salinity, high-suspended-solid, and high-sulfate water when designated for landscape/recreational use, industrial applications, and agricultural irrigation, with exceedance indicators including TDS, ${\mathrm{SO}}_4^{2-} $, total hardness (TH), suspended solids, chemical oxygen demand (COD), and total/fecal coliform bacteria. A comprehensive technical pathway for the comprehensive reutilization of goaf water was established based on the scientific positioning of goaf water sources, water storage grading, the control and treatment of characteristic (residual) pollutants, and the assessment of the comprehensive reutilization potential. Engineering case analysis demonstrates the adaptability of mobile water treatment stations to the complex gully landform of the study area, effectively verifying the prospects for their widespread applications. The results of this study hold great strategic significance for promoting the water-saving, green development of similar water-scarce coal mines.

Keywords

mine water resource utilization, goaf water quality, ion sources, characteristic pollutants, mobile water treatment equipment, Datong mining area

DOI

10.12363/issn.1001-1986.25.05.0403

Reference

[1] 中华人民共和国生态环境部. 中国生态环境状况公报[EB/OL]. (2025-06-05) [2025-07-18]. https://www.mee.gov.cn/ywgz/sthjjcgl/hjzljcypj/202506/t20250605_1120773.shtml.

[2] 何绪文,王绍州,张学伟,等. 煤矿矿井水资源化利用技术创新[J]. 煤炭科学技术,2023,51(1):523−530

HE Xuwen,WANG Shaozhou,ZHANG Xuewei,et al. Coal mine drainage resources utilization technology innovation[J]. Coal Science and Technology,2023,51(1):523−530

[3] 大同市人民政府. 大同市水生态环境保护“十四五”规划[R]. 大同:大同市人民政府,2021.

[4] 赫振平. 大同市水资源利用与经济高质量发展联动关系研究[J]. 海河水利,2023(1):5−12

[5] 陈太森. 山西省关闭煤矿采空区积水评价[D]. 徐州:中国矿业大学,2024.

CHEN Taisen. Evaluation of water accumulation in closed coal mines in Shanxi Province[D]. Xuzhou:China University of Mining and Technology,2024.

[6] 武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805

WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805

[7] 杨斌. 充填裂隙网络非线性渗流特性试验与模拟研究[D]. 沈阳:东北大学,2019.

YANG Bin. Experimental and modeling study on non–linear seepage characteristics of filling fracture networks[D]. Shenyang:Northeastern University,2019.

[8] 杨高峰,卫金善,杨新亮,等. 晋城矿区凤凰山矿周边闭坑矿井水害分析及治理[J]. 煤田地质与勘探,2019,47(增刊1):14−19

YANG Gaofeng,WEI Jinshan,YANG Xinliang,et al. Analysis and treatment of water hazard in closed mines around Fenghuangshan mine in Jincheng[J]. Coal Geology & Exploration,2019,47(Sup.1):14−19

[9] 刘再斌. 基于孔型组合的煤矿水害区域治理模式研究[J]. 煤炭科学技术,2018,46(7):184−189

LIU Zaibin. Study on water hazard regional control pattern based on different borehole type combination[J]. Coal Science and Technology,2018,46(7):184−189

[10] 白中科,段永红,杨红云,等. 采煤沉陷对土壤侵蚀与土地利用的影响预测[J]. 农业工程学报,2006,22(6):67−70

BAI Zhongke,DUAN Yonghong,YANG Hongyun,et al. Forecast of influence of coal–mining subsidence on soil erosion and land use[J]. Transactions of the CSAE,2006,22(6):67−70

[11] ZHANG Kai,DENG Xu,GAO Ju,et al. Insight into the process and mechanism of water–rock interaction in underground coal mine reservoirs based on indoor static simulation experiments[J]. ACS Omega,2022,7(41):36387−36402.

[12] ACHARYA B S,KHAREL G. Acid mine drainage from coal mining in the United States:An overview[J]. Journal of Hydrology,2020,588:125061.

[13] 武强,高俊莲,曾一凡,等. 黄河流域煤矿矿井水资源保护与利用战略研究[J/OL]. 煤炭学报,2025:1–21 (2025-11-14)[2025-08-11]. https://link.cnki.net/doi/10.13225/j.cnki.jccs.2025.0748.

WU Qiang,GAO Junlian,ZENG Yifan,et al. Strategic research on mine water resource protection and utilization in coal mines of the Yellow River Basin[J/OL]. Journal of China Coal Society,2025:1–21(2025-11-14)[2025-08-11]. https://link.cnki.net/doi/10.13225/j.cnki.jccs.2025.0748.

[14] GAO Lei,BRYAN B A,LIU Jian,et al. Managing too little and too much water:Robust mine–water management strategies under variable climate and mine conditions[J]. Journal of Cleaner Production,2017,162:1009−1020.

[15] OTUNOLA B O,MHANGARA P. Global advancements in the management and treatment of acid mine drainage[J]. Applied Water Science,2024,14(9):204.

[16] JIANG Chunfang,GAO Xubo,HOU Baojun,et al. Occurrence and environmental impact of coal mine goaf water in karst areas in China[J]. Journal of Cleaner Production,2020,275:123813.

[17] SI Meiyan,ZHANG Haijin,LONG Yongliang,et al. Bioassessment of a combined chemical–biological treatment for synthetic acid mine drainage[J]. Archives of Environmental Protection,2024,50(4):104−115.

[18] PAGNANELLI F,DE MICHELIS I,DI MUZIO S,et al. Bioassessment of a combined chemical–biological treatment for synthetic acid mine drainage[J]. Journal of Hazardous Materials,2008,159(2/3):567−573.

[19] SIERRA–ALVAREZ R,KARRI S,FREEMAN S,et al. Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors[J]. Water Science and Technology,2006,54(2):179−185.

[20] NAIDU G,RYU S,THIRUVENKATACHARI R,et al. A critical review on remediation,reuse,and resource recovery from acid mine drainage[J]. Environmental Pollution,2019,247:1110−1124.

[21] HU Xiao,ZHANG Quan. Mine water treatment,resource utilization and prospects in coal mining areas of western China[J]. Mine Water and the Environment,2024,43(2):210−230.

[22] 李小牛. 山西省矿坑水资源化利用现状、问题及对策[J]. 水资源开发与管理,2023,9(5):29−33

LI Xiaoniu. Research on the current situation,problems and countermeasures of resources utilization of mines in Shanxi Province[J]. Water Resources Development and Management,2023,9(5):29−33

[23] 郭万忠,程岳宏,高宇平,等. 大同煤田构造特征及太原组赋煤边界[J]. 煤田地质与勘探,2015,43(5):1−7

GUO Wanzhong,CHENG Yuehong,GAO Yuping,et al. Structural characteristics and coal–bearing boundaries of Taiyuan Formation in Datong coalfield[J]. Coal Geology & Exploration,2015,43(5):1−7

[24] 李俊. 大同云冈沟矿区采空区水资源化技术研究[D]. 淮南:安徽理工大学,2019.

LI Jun. Study on water resources utilization of goaf in Yunganggou Mining Area,Datong City,Shanxi Province[D]. Huainan:Anhui University of Science & Technology,2019.

[25] 孙丽萍,路堃. 2021—2023年呼伦贝尔市14个旗市(区)生活饮用水中耗氧量指标监测结果分析[J]. 实验室检测,2025,3(5):149−151

[26] 孙亚军,郭娟,徐智敏,等. 我国煤矿区矿井水水质空间分布特征及矿井水处理技术思路[J]. 煤炭学报,2025,50(1):584−599

SUN Yajun,GUO Juan,XU Zhimin,et al. Spatial distribution characteristics of mine water quality in coal mining areas of China and technological approaches for mine water treatment[J]. Journal of China Coal Society,2025,50(1):584−599

[27] 秦兵,李俊霞. 大同盆地高氟地下水水化学特征及其成因[J]. 地质科技情报,2012,31(2):106−111

QIN Bing,LI Junxia. Hydrochemistry and occurrence of high fluoride groundwater in Datong Basin[J]. Geological Science and Technology Information,2012,31(2):106−111

[28] 赵慧玲. 大同煤田岩溶地下水的水文地质特征分析[J]. 中国煤田地质,2004,16(1):26−28

ZHAO Huiling. Hydrogeologic feature analysis of karst groundwater in Datong coalfield[J]. Coal Geology of China,2004,16(1):26−28

[29] 屈晓荣. 大同煤田北部中侏罗统煤中伴生元素分布特征及其地质意义[J]. 煤田地质与勘探,2019,47(1):64−72

QU Xiaorong. Distribution characteristics of associated elements in Middle Jurassic coal in the north of Datong coalfield and their geological significance[J]. Coal Geology & Exploration,2019,47(1):64−72

[30] PARKHURST D L. Geochemical mole–balance modeling with uncertain data[J]. Water Resources Research,1997,33(8):1957−1970.

[31] 张杰. 淮北煤田岩溶水水文地球化学演化及其对地热的指示意义[D]. 合肥:合肥工业大学,2023.

ZHANG Jie. Hydrogeochemical evolution of karst water and its indicative significance for geothermal in Huaibei coalfield[D]. Hefei:Hefei University of Technology,2023.

[32] 李竞赢,刘启蒙,杨明慧. 矿井水水化学特征及资源化利用研究:以张集煤矿为例[J]. 煤炭科学技术,2023,51(4):254−263

LI Jingying,LIU Qimeng,YANG Minghui. Study on chemical characteristics and resource utilization of mine water:Taking Zhangji coal mine as an example[J]. Coal Science and Technology,2023,51(4):254−263

[33] 陈陆望,武明辉,侯晓伟,等. 帷幕墙影响下侏罗系砾岩含水层地下水化学时空演化规律[J]. 煤田地质与勘探,2025,53(1):174−183

CHEN Luwang,WU Minghui,HOU Xiaowei,et al. Spatiotemporal evolutionary patterns of the hydrochemistry of Jurassic conglomerate aquifers under the influence of curtain walls[J]. Coal Geology & Exploration,2025,53(1):174−183

[34] 令狐昌卫,寸得欣,尹林虎,等. 滇东典型煤矿区地表水地下水化学特征及控制因素[J]. 科学技术与工程,2023,23(32):13728−13740

LINGHU Changwei,CUN Dexin,YIN Linhu,et al. Hydrochemical characteristics and controlling factors of surface water and groundwater in typical coal mining areas in eastern Yunnan[J]. Science Technology and Engineering,2023,23(32):13728−13740

[35] 房满义,李雪妍,张根,等. 煤矿地下水库水岩作用机理研究:以大柳塔煤矿为例[J]. 煤炭科学技术,2022,50(11):236−242

FANG Manyi,LI Xueyan,ZHANG Gen,et al. Research on water–rock interaction mechanism in coal mine underground reservoir:Taking Daliuta coal mine as an example[J]. Coal Science and Technology,2022,50(11):236−242

[36] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 煤矿矿井水分类:GB/T 19223—2015[S]. 北京:中国标准出版社,2015.

[37] 国家市场监督管理总局,国家标准化管理委员会. 煤矿矿井水利用技术导则:DB/T 31392—2022[S]. 北京:中国标准出版社,2022.

[38] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 地下水质量标准:GB/T 14848—2017[S]. 北京:中国标准出版社,2017.

[39] 国家环境保护总局,国家质量监督检验检疫总局. 地表水环境质量标准:GB 3838—2002[S]. 北京:中国环境科学出版社,2002.

[40] 李泽岩,曹文庚,王卓然,等. 内蒙古河套灌区浅层地下水化学特征和灌溉适宜性分析[J]. 现代地质,2022,36(2):418−426

LI Zeyan,CAO Wengeng,WANG Zhuoran,et al. Hydrochemical characterization and irrigation suitability analysis of shallow groundwater in Hetao irrigation district,Inner Mongolia[J]. Geoscience,2022,36(2):418−426

[41] 孔晓乐,杨永辉,曹博,等. 永定河上游地表水–地下水水化学特征及其成因分析[J]. 环境科学,2021,42(9):4202−4210

KONG Xiaole,YANG Yonghui,CAO Bo,et al. Hydrochemical characteristics and factors of surface water and groundwater in the upper Yongding River Basin[J]. Environmental Science,2021,42(9):4202−4210

[42] 国家环境保护总局,国家质量监督检验检疫总局. 煤炭工业污染物排放标准:GB 20426—2006[S]. 北京:中国环境科学出版社,2006.

[43] 顾大钊,曹志国,李井峰,等. 煤矿地下水库技术原创试验平台体系研制及应用[J]. 煤炭学报,2024,49(1):100−113

GU Dazhao,CAO Zhiguo,LI Jingfeng,et al. Original experimental platform system and application of underground coal mine reservoirs[J]. Journal of China Coal Society,2024,49(1):100−113

[44] 姚伟华,王鹏,李明星,等. 三分量地–孔瞬变电磁法积水采空区探测试验[J]. 煤田地质与勘探,2019,47(5):54−62

YAO Weihua,WANG Peng,LI Mingxing,et al. Experimental study of three–component down–hole TEM for detecting water–filled goaf[J]. Coal Geology & Exploration,2019,47(5):54−62

[45] 张庆辉,田忠斌,林君,等. 时域电性源地空电磁系统在煤炭采空积水区勘查中的应用[J]. 煤炭学报,2019,44(8):2509−2515

ZHANG Qinghui,TIAN Zhongbin,LIN Jun,et al. Application of time domain electrical source ground airborne electromagnetic system in goaf water exploration[J]. Journal of China Coal Society,2019,44(8):2509−2515

[46] 蒋斌斌,李井峰,吴敏,等. 煤矿地下水库对矿井水净化机理研究进展[J]. 矿业科学学报,2023,8(2):137−145

JIANG Binbin,LI Jingfeng,WU Min,et al. Review on the purification mechanism of mine water by coal mine underground reservoir[J]. Journal of Mining Science and Technology,2023,8(2):137−145

[47] 赵阳升,杨栋,冯增朝,等. 多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J]. 岩石力学与工程学报,2008,27(7):1321−1328

ZHAO Yangsheng,YANG Dong,FENG Zengchao,et al. Multi–field coupling theory of porous media and its applications to resources and energy engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(7):1321−1328

[48] 关磊声. 大同口泉沟–云冈沟矿区煤矿采空区水水质评价[D]. 淮南:安徽理工大学,2019.

GUAN Leisheng. Evaluation of goaf water quality in Datong Kouquangou–Yunganggou coal mine[D]. Huainan:Anhui University of Science & Technology,2019.

[49] 黄大伟,桂和荣. 一种多功能移动式净水装置:CN107098509A[P]. 2017-08-29.

[50] 桂和荣,黄大伟. 一种煤矿采空区水利用的多模块耦合处理系统及方法:CN107129075A[P]. 2017-09-05.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.